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1 Problem Statement: A Computational Theory of Justified Ac-
tion Under Internal Pluralities

Agents do not fail because they lack predictions, they fail when they act on predictions whose relevance they
cannot justify. We propose a computational theory of justified action under internal pluralities.
When should an intelligent agent act on diverse, conflicting internal signals versus abstaining to preserve
epistemic integrity—the state where internal components have achieved sufficient coordination about what
distinctions matter for principled action given their current internal diverging perspectives? This question
arises whenever agents must coordinate without shared objectives [Arrow, 1951; Ngo, 2025a], from neural
network components processing contradictory gradients [Elhage et al., 2021] to human-AI teams navigating
value misalignment [Russell, 2019].

The Universal Challenge. Every intelligent system faces this fundamental dilemma. A large language
model must reconcile conflicting training signals when generating responses [Bai et al., 2022]. A human
weighs competing intuitions before making decisions. A multi-agent system coordinates despite divergent
objectives [List and Pettit, 2011]. In each case, the core question remains: when is action epistemically
justified given internal conflict? This challenge appears whether we view the agent as a computational
system managing internal diverging perspectives or as a coalition of subagents that must achieve normative
coordination before committing to action.

Beyond Classical Decision Theory. Traditional approaches assume agents either possess well-defined
utility functions [Savage, 1954] or can learn them through environmental feedback [Sutton and Barto, 2018].
But intelligence systems often operates in the absence of clear optimization targets [Russell, 2019], relying
instead on diverse, potentially misaligned internal signals. We formalize when action based on such signals is
epistemically coherent—what we term well-foundedness [Ngo, 2025b]: when internal epistemic struc-
ture warrants action, rather than merely optimal. This requires not just computational tractability, but also
principled coordination among internal components that may hold conflicting views about what distinctions
matter for decision-making. Current approaches exhibit systematic failures when internal components dis-
agree: neural networks display inconsistent behavior across semantically equivalent inputs, human-AI teams
reach unstable compromises that satisfy neither party’s values, and multi-agent systems oscillate between
conflicting strategies. These failures stem from acting before achieving sufficient internal epistemic coordi-
nation, highlighting the need for principled mechanisms that preserve future options for coherent action.

From External to Internal Strategic Equivalence. Our approach builds on Strategic Equivalence
Relations (SER) [Lauffer et al., 2023], which provide a principled method for discarding distinctions among
strategies in game-theoretic settings. In classical SER, agents ignore differences between strategies unless
they lead to different best responses against all possible opponent strategies. We generalize this framework
from external multi-agent coordination to internal epistemic arbitration: rather than determining which
strategic distinctions matter against external opponents, we establish which expert distinctions matter for
internal coordination. This shift from inter-agent to intra-agent equivalence relations enables principled
abstraction over conflicting internal signals while preserving decision-relevant information.

The One-Step Pluralist Bandit (1SPB) Setting. We study this challenge in its most essential form:
a stateless decision problem where an agent must arbitrate among K internal experts, each producing scalar
predictions Qk(a) ∈ [0, 1] for every action a ∈ A. These predictions represent fixed epistemic inputs: priors,
heuristics, or biases that may diverge significantly. The agent applies an abstraction function φ to compress
expert configurations into equivalence classes, paralleling accessibility relations in Kripke models of knowledge
[Fagin et al., 1995; Chellas, 1980]. There is no feedback, no reward signal, no iterative learning—only the
pure problem of epistemic arbitration among potentially disagreeing components.

Dual Theoretical Perspectives. We develop this framework through two complementary lenses. From
a computational perspective, we establish conditions for well-foundedness Ngo [2025b]—when an agent’s
internal structure has achieved sufficient epistemic coherence to warrant action. From a coordination-theoretic
perspective, we analyze this as a problem of norm emergence among internal coalition members who must
achieve common knowledge about decision-relevance before proceeding. These perspectives yield identical
mathematical procedures while offering different conceptual foundations for understanding epistemically
justified action under plurality. Operationalizing Epistemic Responsibility. Our central innovation lies
in making abstract philosophical concepts computationally tractable [Goldman, 1999]. We introduce two
complementary epistemic conditions that must be satisfied before action is permitted:

• Epistemic Sufficiency: Verifying that internal distinctions are irrelevant to the choice boundary

• Epistemic Stability: Ensuring that uncertainty about expert weighting does not deform behavior
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for licensing, collaboration, or reuse. To Meridian, Cassiopeia, and Chris: thank you for showing me that the deepest care often
needs no words.

1



These conditions are both necessary and jointly sufficient for epistemic justification. Sufficiency alone is
insufficient, an agent might preserve decision-relevant distinctions yet remain paralyzed by disagreement
about how to weight them. Stability alone is also insufficient, consistent weighting of experts provides no
guarantee that meaningful distinctions haven’t been discarded. Only their conjunction ensures that both
the abstraction preserves what matters and the internal coalition agrees on how to use it. This abstention-
capable approach addresses a critical failure mode: premature action under internal disagreement often
leads to brittle, unstable behavior that performs worse than withholding action until internal coordination
is achieved. Consider an AI system with conflicting safety and capability considerations—acting before
these are reconciled risks systematic misalignment, while abstention preserves future options for principled
coordination. Action proceeds only when both conditions are satisfied simultaneously. This joint require-
ment transforms the philosophical question of epistemic justification , whether internal coordination has
reached the threshold where action becomes warranted, into concrete computational checkpoints[Chow, 1970;
Geifman and El-Yaniv, 2017].

Rather than optimizing for expected outcomes, the agent first verifies that its internal components have
achieved sufficient normative agreement about what distinctions matter for action. When either epistemic
condition fails, the agent abstains—not due to uncertainty about the world, but due to insufficient inter-
nal coordination about decision-relevance. This preserves both computational tractability and normative
legitimacy: action proceeds only when internal coalition members can trust that their shared abstraction
preserves all strategically relevant distinctions. From Simulation to Arbitration. This reframes agency
itself [Ngo, 2025a, 2023], providing a scale-invariant grammar for coordination. Rather than viewing
intelligence as world-modeling followed by optimization, we propose it as epistemic arbitration under
constraint . The question is not “what should I do given complete world knowledge?” but “when
is my internal diverging perspectives sufficiently resolved to warrant any action that repre-
sents my plural beliefs in a stable, principled manner?” This applies whether internal coordination
emerges through computational mechanisms (hierarchical agency Kulveit [2024]) or through norm coordina-
tion processes (common knowledge achievement). Where memory-centric theories classify what an agent can
represent Kirtland et al. [2025], we define when representation is sufficient to act. The result is a planner-
free, abstention-capable substrate for principled action under plurality—whether in neural modules
learning to coordinate their outputs, human-AI teams establishing shared trust boundaries, or civilizational
coalitions navigating value plurality [List and Pettit, 2011]. Justified coordination, under this lens, begins
when epistemic agreement has converged [Aumann, 1976; Moses and Tennenholtz, 1995]—a form of norm
emergence focused not on behavioral coordination (how to act) but on epistemic justification (when action
itself becomes warranted).

2 Epistemic Sufficiency

The principle of epistemic sufficiency defines the minimal condition under which internal plurality may
be collapsed into action. It governs when an abstraction over expert predictions preserves all distinctions that
matter to the agent’s behavior. Condition (1) operationalises the modal axiom K for the internal coalition:
indistinguishable expert profiles must induce identical soft best-response policies, just as indistinguishable
worlds satisfy the same propositions in Kripke semantics [Fagin et al., 1995, Ch. 2].

However, epistemic sufficiency governs when an abstraction preserves decision-relevant distinctions, but
does not specify how to construct such abstractions in the first place. We first address this foundational
question by defining principled abstraction construction, then establish the sufficiency criterion that evaluates
these abstractions.

2.1 Principled Abstraction Construction

This section formalizes the canonical abstraction that preserves exactly the decision-relevant distinctions
and derives tractable approximations via constrained optimization.

2.1.1 Canonical Decision Equivalence

The fundamental question in epistemic arbitration is: when should two different expert configurations be
treated as equivalent? Intuitively, configurations that lead to identical decision outcomes contain no strate-
gically relevant distinctions and may be safely merged. This insight leads us to define equivalence in terms
of policy identity rather than prediction similarity. We begin with the observation that two expert configu-
rations should be considered equivalent if and only if they induce identical decision policies at the current
temperature setting.

Motivation. Consider two expert configurations that, despite numerical differences in their predictions,
yield identical soft best-response policies after temperature-weighted aggregation. From the agent’s decision-
theoretic perspective, these configurations are functionally indistinguishable, meaning that any choice be-
tween them is arbitrary. Conversely, configurations that induce different policies represent genuine epistemic
distinctions that matter for action selection. This motivates a canonical notion of equivalence based purely
on decision boundaries. The soft best-response policy follows the Boltzmann distribution [Jaynes, 2003],
where temperature τ controls the agent’s sensitivity to internal disagreement. This connection formalizes
the intuition that epistemic arbitration should preserve exactly the distinctions that matter for the agent’s
knowledge-to-action translation, grounded in modal logic foundations [Chellas, 1980].

Definition 1 (Canonical epistemic equivalence). For expert configurations Q,Q′ ∈ [0, 1]K×|A| and fixed
temperature τ , define

Q ∼π∗,τ Q′ ⇐⇒ π∗
raw(·|Q) = π∗

raw(·|Q′) (1)
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where π∗
raw is the unabstracted policy from Equation (1).

This relation is an equivalence relation since policy equality is reflexive, symmetric, and transitive. Equiv-
alence classes are defined point-wise for the temperature τ in force for that decision episode.

Temperature dependence. The equivalence relation ∼π∗,τ explicitly depends on the temperature
parameter τ , reflecting that the same prediction differences may be strategically relevant at one temperature
but negligible at another. When τ is small, the softmax policy becomes more pointed, and minor prediction
differences can yield distinct action preferences. As τ increases, the policy smooths, and more configurations
become equivalent. This temperature dependence ensures that epistemic equivalence respects the agent’s
current sensitivity to internal disagreement.

The canonical abstraction is then:
φcan,τ (Q) := [[Q]]∼π∗,τ

(2)

which maps each configuration to its equivalence class under decision-boundary preservation.
Canonical abstraction properties. The canonical abstraction φcan,τ represents the coarsest possible

grouping of expert configurations that preserves all decision-relevant information. It collapses exactly those
distinctions that do not affect the agent’s choice distribution, while maintaining all strategic differences.
This makes it the natural benchmark against which other abstractions should be measured.

Optimality of the canonical abstraction. Having defined the canonical equivalence relation, we
now establish its fundamental optimality properties. The key insight is that φcan,τ represents the coarsest
possible abstraction that maintains epistemic sufficiency, making it the natural benchmark for evaluating
other abstraction schemes.

Proposition 1 (Maximally coarse safe abstraction). The canonical abstraction φcan,τ satisfies ∆SEC(φcan,τ ) =
0. Furthermore, any abstraction φ with ∆SEC(φ) = 0 must refine φcan,τ ; that is, φ

−1(φ(Q)) ⊆ φ−1
can,τ (φcan,τ (Q))

for all Q.

Understanding the refinement condition. The refinement condition φ−1(φ(Q)) ⊆ φ−1
can,τ (φcan,τ (Q))

formalizes the intuition that any epistemically safe abstraction must be at least as fine-grained as the canon-
ical one. In concrete terms, if two configurations Q and Q′ are grouped together by some abstraction φ, they
must also be grouped together by φcan,τ . This means that φ cannot merge configurations that the canonical
abstraction keeps separate, doing so would violate epistemic sufficiency by conflating strategically distinct
expert profiles.

Proof. If φ(Q) = φ(Q′) and ∆SEC(φ) = 0, then KL(π∗
raw(·|Q)∥π∗

raw(·|Q′)) = 0. By non-negativity of KL di-
vergence, zero implies equality of distributions, hence Q ∼π∗,τ Q′. Therefore φ−1(φ(Q)) ⊆ φ−1

can,τ (φcan,τ (Q)).

Proof interpretation. The proof establishes the refinement property through a straightforward logical
chain. When an abstraction φ achieves perfect epistemic sufficiency (∆SEC(φ) = 0), any two configurations
it groups together must induce identical policies. But this policy identity is precisely the defining criterion for
canonical equivalence. Therefore, every grouping made by φ must respect the canonical equivalence classes,
meaning φ can only create finer partitions, never coarser ones. The KL divergence [Cover and Thomas, 2006]
provides the natural measure for policy differences under this epistemic framework.

Uniqueness and maximality. This proposition establishes that φcan,τ occupies a unique position in
the space of all possible abstractions: it is the unique maximally coarse abstraction that preserves epistemic
sufficiency. Any attempt to create a coarser abstraction, one that merges configurations separated by φcan,τ ,
must necessarily violate the sufficiency condition by conflating configurations with different induced policies.

Practical implications for abstraction design. The optimality result provides crucial guidance for
practical abstraction construction. First, it establishes an upper bound on compression: no abstraction can
be both epistemically safe and more aggressive than φcan,τ in merging configurations. Second, it suggests a
principled evaluation criterion: practical abstractions should be measured by how closely they approximate
the canonical partition while remaining computationally tractable.

Connection to information theory. From an information-theoretic perspective, φcan,τ achieves the
minimal sufficient statistic [Lehmann and Casella, 2005] for decision-making under the current temperature
regime. It retains exactly the information needed to preserve the soft best-response policy while discarding
all strategically irrelevant details about expert predictions. This connects our epistemic framework to clas-
sical statistical decision theory, where sufficient statistics play a similar role in preserving decision-relevant
information.

Limitations and computational reality. While theoretically elegant, the canonical abstraction faces
significant computational challenges. In continuous or high-dimensional prediction spaces, enumerating all
equivalence classes under policy identity may be intractable. Moreover, checking whether two configurations
induce identical policies requires exact computation, which may be numerically unstable. These practical
limitations motivate the need for tractable approximations that sacrifice some optimality for computational
feasibility.

Interpretation. This proposition establishes φcan,τ as the unique maximally coarse abstraction that
preserves epistemic sufficiency. Any abstraction that achieves perfect sufficiency (∆SEC = 0) must be at
least as fine-grained as the canonical abstraction. This provides a theoretical upper bound on compression:
no abstraction can be both epistemically safe and coarser than φcan,τ .

Connection to modal epistemology. The canonical equivalence relation mirrors the accessibility
relations in Kripke semantics for epistemic logic. Just as possible worlds are equivalent when they satisfy the
same epistemic formulas, expert configurations are equivalent when they induce the same decision policies.
This connection formalizes the intuition that epistemic arbitration should preserve exactly the distinctions
that matter for the agent’s knowledge-to-action translation.
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Practical implications. While φcan,τ provides the theoretical standard, it may be computationally
intractable for continuous or high-dimensional prediction spaces. The canonical abstraction serves as a the-
oretical foundation rather than a practical algorithm. Its primary value lies in establishing the epistemic
boundary: any tractable approximation must respect the constraint that strategically equivalent configura-
tions remain grouped together.

2.2 Tractable Approximation via Constrained Optimization

Since φcan,τ may be computationally intractable, we derive practical abstractions by solving:

φ∗ = argmin
φ∈F

I(Q;φ(Q)) subject to ∆SEC(φ) ≤ ε (C.1)

where I(·; ·) denotes mutual information and F is a tractable family of abstraction functions corresponding
to the decision-boundary preserving clustering, sparse attention masks, and information bottleneck methods
detailed in Section 6.3.

This approach shifts the burden of justification from post-hoc testing φ to principled construction: φ is
admissible only if it preserves the decision boundary up to ε. To ensure feasibility, choose ε no smaller than
0.5 ·minclass KL observed on validation samples.

Any optimizer φ∗ solving (C.1) automatically satisfies the epistemic sufficiency requirement ∆SEC(φ
∗) ≤

ε, though stability (Section 3) must be verified separately via Algorithm 2 or by extending (C.1) with an
additional constraint ∆SECplural

(φ) ≤ ε.
The constraint can be enforced via Lagrangian methods or penalty approaches. In practice, we employ

the empirical proxy:
LEIB(φ) = Ĥ[φ(Q)]− βÎ[π∗

φ;Q] + λ∆̂SEC(φ) (C.2)

with λ chosen large enough to enforce the epistemic boundary, where ∆̂SEC uses the sample-bounded esti-
mator from Section 6.1.

3 Epistemic Stability

Beyond individual knowledge, coherent action demands robustness akin to distributed knowledge—what the
coalition would know if their beliefs were pooled Fagin et al. [1995]. Epistemic stability therefore requires
that every admissible pooling W yield an indistinguishable policy. While epistemic sufficiency ensures that
abstraction preserves decision-relevant distinctions, it does not guarantee that internal disagreement has
been meaningfully reconciled. Even within a sufficient abstraction class, different aggregations of expert
predictions may yield divergent policies. Epistemic stability addresses this residual uncertainty: it ensures
that no admissible arbitration weighting over experts induces a materially different action distribution.

Motivation. Rather than assuming uniform expert weighting, the agent must consider multiple plausible
trust distributions, realizing distributed knowledge aggregation [Fagin et al., 1995, §2]. This expert ag-
gregation problem connects to classical social choice theory [Arrow, 1951], though here applied to internal
epistemic arbitration rather than social preferences. This internal consensus problem connects to classical
convergence results [DeGroot, 1974], though here applied to epistemic arbitration rather than belief updating.
We provide principled methods for constructing the admissible weighting set W ⊂ ∆K .

Construction Method 1: Competence-based weights Define expert competence scores ck ∈ [0, 1]
based on:

• Historical accuracy on validation tasks

• Confidence calibration metrics

• Domain-specific expertise indicators

Then construct Wcomp = {W ∈ ∆K : Wk ∝ exp(αck), α ∈ [0, αmax]} for temperature parameter αmax.
Construction Method 2: Uncertainty-aware weights For each expert k, estimate prediction un-

certainty uk = Var(Qk) and define:

Wunc =

{
W ∈ ∆K : Wk =

(1/uk)
β∑

j(1/uj)β
, β ∈ [0, βmax]

}

This emphasizes confident experts while maintaining robustness to uncertainty estimation errors.
Construction Method 3: Adversarial robustness Consider worst-case expert reliability by includ-

ing:
Wrobust = {W ∈ ∆K : ∥W −Wuniform∥1 ≤ ρ}

for robustness radius ρ > 0. This ensures stability even if trust assumptions are violated.
Practical recommendation: Use the union W =Wcomp ∪Wunc ∪Wrobust to capture multiple sources

of weighting uncertainty. These construction methods instantiate principled aggregation functions [Grabisch
et al., 2009] adapted for epistemic arbitration under internal disagreement.
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Weighted soft best response. For any weighting W ∈ ∆K over experts, define the induced soft best
response:

π∗
W (a) ∝ exp

(
1

τ

K∑
k=1

WkQk(a)

)
This generalizes the uniform averaging used in the abstraction policy. The agent may consider a finite set
W ⊂ ∆K of admissible arbitration weights constructed using the methods above.

Stability criterion. We define the maximum policy divergence across these admissible weightings as:

∆SECplural := max
W1,W2∈W

KL
(
π∗
W1
∥π∗

W2

)
The abstraction is said to be epistemically stable if:

∆SECplural < ϵ

for the same divergence threshold ϵ > 0. This ensures that the agent’s uncertainty over expert aggregation
does not result in unstable or contradictory actions.

Interpretation. Epistemic stability imposes a behavioral coherence condition: all admissible aggregations
must lead to policies that are effectively indistinguishable. Unlike sufficiency, which tests stability across
different prediction configurations within an abstraction class, stability tests robustness to internal weighting
under fixed predictions. Both are needed to justify action.

Relation to abstention. If ∆SECplural ≥ ϵ, then internal arbitration remains unresolved: different inter-
pretations of the same abstraction lead to different behaviors. In this case, the agent abstains. Stability thus
provides a second gate, complementing sufficiency, on whether internal plurality has truly been reconciled.

Tractability considerations. Computing ∆SECplural over all of ∆K is intractable. However, our con-
struction methods provide finite, tractable weighting sets. In practice, the agent may:

• Use the principled construction methods above to generate W;

• Apply sparse priors or trust-based kernels within each construction method;

• Bound divergence using closed-form approximations for distributions over bounded Q-values.

Summary. Epistemic stability ensures that abstraction-induced aggregation yields coherent action, even
under uncertainty about internal weighting. It complements epistemic sufficiency by verifying that com-
pression is not just justified in form, but stable in outcome. Together, these two criteria define a minimal
epistemic standard for justified arbitration.

3.1 Adaptive Weighting Set Construction

Algorithm 2: Dynamic weighting set construction

1. Initialize with uniform weighting: W = {Wuniform}

2. For each construction method m ∈ {comp,unc, robust}:

(a) Generate candidate weights Wm

(b) Compute ∆plural
SEC over W ∪Wm

(c) If ∆plural
SEC < ϵ, add Wm to W

3. Return largest admissible weighting set

Proposition 2 (Weighting set optimality). Algorithm 2 returns the largest weighting set satisfying epistemic
stability, ensuring maximal robustness to trust specification while maintaining epistemic guarantees.

Computational complexity: Each iteration requires O(|Wm| · |A|) evaluations, making the total com-
plexity O(K2 · |A|) for dense weighting exploration or O(K · |A|) for sparse parameterizations.

4 Well-Foundedness and Epistemic Norm Coordination

This section presents our core theoretical contribution through two complementary lenses. We first develop
the technical framework of well-foundedness, grounded in hierarchical agency and computational constraints.
We then present an equivalent coordination-theoretic interpretation based on epistemic norm emergence.
Finally, we establish formal equivalence between these frameworks, demonstrating that they yield identical
computational procedures while providing different conceptual foundations for understanding justified action
under internal disagreement.
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4.1 Well-Foundedness

We now define well-foundedness as the structural condition under which an agent’s arbitration procedure
is epistemically justified in proceeding to action. In the one-step pluralist bandit (1SPB) setting, well-
foundedness is not a property of the environment or expert predictions per se—it is a property of the agent’s
internal epistemic structure. It holds only when abstraction is both strategically sound and behaviorally
stable. The dual test below recreates common knowledge of readiness internally: only when both sufficiency
and stability hold [Fagin et al., 1995, Prop. 6.1.2] may the agent act.

Definition. An agent’s decision is said to be well-founded if and only if both of the following conditions
are satisfied:

1. Epistemic sufficiency: For any two expert configurations Q,Q′ that map to the same abstraction
class under ϕ, their induced policies are nearly identical:

∆SEC := max
Q,Q′∈φ−1(φ(Q))

KL(π∗(· | Q) ∥π∗(· | Q′)) < ϵ

2. Epistemic stability: For any two admissible expert weightings W1,W2, their induced policies are
nearly identical:

∆SECplural := max
W1,W2∈W

KL(π∗
W1
∥π∗

W2
) < ϵ

These two criteria jointly ensure that: (a) abstraction does not erase distinctions that matter for decision-
making, and (b) remaining internal disagreement does not deform the action boundary beyond an acceptable
threshold.

Interpretation. Well-foundedness expresses minimal epistemic coherence. It ensures that the agent nei-
ther collapses meaningful distinctions nor acts amid unresolved ambiguity. If either condition fails, the agent
abstains—not due to uncertainty about outcomes, but due to internal misalignment about what distinctions
matter. This reflects a form of epistemic discipline: action is permitted only when internal representations
have converged to relevance-preserving and influence-stable forms.

Practical implications. The well-foundedness criterion can be implemented as a static check prior to
action. It does not require modeling external states, estimating expected returns, or simulating future
rollouts. Instead, it verifies that the agent’s internal compression and arbitration mechanisms satisfy a
minimal agreement condition. This makes it applicable in planner-free, feedback-free, and decentralized
settings where overcommitment may be costly or unjustified.

Theoretical connection. Well-foundedness generalizes the logic of Strategic Equivalence Relations (SER)
Lauffer et al. [2023] to internally plural agents. In SER, agents discard distinctions among co-policies unless
they induce different best responses. Here, we apply the same epistemic logic internally: distinctions among
expert predictions (and their aggregations) are retained only when they alter the soft best response. The
result is a principled mechanism for coordination under epistemic plurality.

Summary. Well-foundedness defines when an agent’s abstraction and aggregation cohere into a stable,
justified action. It ensures that internal disagreement has been reconciled to the degree required for prin-
cipled commitment. When this threshold is not met, the agent abstains preserving epistemic integrity over
premature convergence.

4.2 Coordination-Theoretic Interpretation: Epistemic Norm Coordination

We now present an equivalent formulation based on coordination theory and convention emergence. From
this perspective, epistemic norm coordination is the structural condition under which a coalition’s arbitration
procedure is epistemically justified in proceeding to action. In the 1SPB setting, norm coordination is not
a property of expert predictions per se—it is a property of the coalition’s capacity to achieve common
knowledge about decision-relevance [Fagin et al., 1995].

Epistemic Norm Coordination Principle. Action is epistemically justified if and only if the coalition
satisfies three qualitative coordination conditions:

1. Norm Existence: A canonical abstraction φcan,τ exists and is well-defined

2. Norm Coherence: φcan,τ preserves all and only decision-relevant distinctions

3. Norm Consensus: All admissible coalition interpretations respect φcan,τ

When any condition fails, the coalition lacks common knowledge about decision-relevance, making abstention
necessary to preserve epistemic integrity.
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Formal Coordination Conditions. Condition 1: Norm Existence (Canonical Abstraction Well-
Definedness)

∃!φcan,τ : [0, 1]K×|A| → Φ such that φcan,τ is unique and stable

This condition ensures the coalition can formulate a coherent norm about what distinctions matter. The
canonical abstraction represents the coalition’s emergent convention about decision-relevance.

Condition 2: Norm Coherence (Internal Consistency)

φcan,τ preserves all strategically relevant distinctions⇔ (3)

∀Q,Q′ ∈ φ−1
can,τ (φcan,τ (Q)) : π∗(|Q) = π∗(|Q′) (4)

This condition ensures the proposed norm is internally consistent—it preserves exactly the distinctions it
claims to preserve. Configurations grouped together under the canonical abstraction must induce identical
policies.

Condition 3: Norm Consensus (Shared Understanding)

∀W1,W2 ∈ W : π∗
W1
≈ π∗

W2
under φcan,τ

This condition ensures different members of the coalition interpret the norm the same way. All admissible
interpretations of the canonical abstraction must converge to consistent action policies.

Coordination-Theoretic Interpretation. Epistemic integrity emerges from the coalition’s capacity
to maintain coherent shared norms about decision-relevance, not from keeping disagreement below arbitrary
thresholds. Convention emergence occurs when the coalition spontaneously coordinates on φcan,τ without
external enforcement—a computational instantiation of common knowledge achievement. This connects to
recent work on learning normativity [Demski, 2020, 2021], which addresses how agents can learn appropriate
norms without perfect feedback or gold-standard training signals. Abstention as coordination failure:
When norm coordination fails, abstention becomes necessary not because ”disagreement is too high,” but
because there is no coherent ”coalition decision” to be made. The coalition lacks the epistemic common
ground required for justified action.

Connection to Norm Learning. This framework connects to recent advances in computational norm
learning [Oldenburg and Zhi-Xuan, 2024; Tan and Ong, 2019; Demski, 2020], where agents achieve coordi-
nation by ”assuming there exists a shared set of norms that most others comply with while pursuing their
individual desires” [Oldenburg and Zhi-Xuan, 2024]. This builds on foundational work in norm learning [Tan
et al., 2019; Demski, 2020] and Bayesian approaches to social norm inference [Tan and Ong, 2019].

4.3 Equivalence and Translation Between Frameworks

We now establish formal equivalence between well-foundedness and epistemic norm coordination, demon-
strating that they represent different conceptual lenses on identical mathematical procedures.

Fundamental Equivalence Theorem.

Theorem 1 (Framework Equivalence). An agent’s decision is well-founded if and only if the agent’s internal
coalition has achieved epistemic norm coordination. Formally:

Well-Founded(Agent)⇔ Norm-Coordinated(Coalition) (5)

∆SEC < ϵ ∧∆SECplural < ϵ⇔ Norm Existence ∧Norm Coherence ∧Norm Consensus (6)

Translation Mappings. The frameworks are related by the following conceptual translations:

Well-Foundedness Norm Coordination Mathematical Reality
Canonical abstraction φcan,τ Emergent epistemic convention Same optimality result (Prop. 1)
Epistemic sufficiency Norm coherence achievement Same: ∆SEC < ϵ
Epistemic stability Norm consensus achievement Same: ∆SECplural < ϵ
Internal misalignment Coordination failure Same computational gate
Abstention threshold ϵ Context-dependent consensus req. Same divergence bound

Computational Procedures. Both frameworks yield identical algorithms:

1. Canonical abstraction construction: Same constrained optimization (Section 2.2)

2. Sufficiency testing: Same ∆SEC computation via sampling bounds

3. Stability testing: Same ∆SECplural computation over admissible weightings

4. Action/abstention decision: Same dual gate condition

Conceptual Benefits of Dual Formulation. The equivalence reveals deep connections between appar-
ently distinct research traditions:

From well-foundedness: Connects to hierarchical agency theory [Ngo, 2025a], Strategic Equivalence
Relations [Lauffer et al., 2023], and computational tractability constraints.

From norm coordination: Connects to common knowledge theory [Aumann, 1976], convention emer-
gence [Lewis, 1969], computational social choice [Arrow, 1951], and recent advances in computational norm
learning [Tan and Ong, 2019; Oldenburg and Zhi-Xuan, 2024; Demski, 2020].

Threshold interpretation: Well-foundedness treats ϵ as a computational necessity; norm coordination
treats ϵ as context-dependent coordination requirements.
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Summary. This dual formulation demonstrates that our framework captures fundamental principles that
emerge independently from both computational constraints (well-foundedness) and coordination require-
ments (norm emergence). The mathematical inevitability of the same procedures arising from different
theoretical starting points suggests that we have identified essential structural features of justified action
under internal disagreement, rather than arbitrary design choices.

5 Illustrative Example: Abstraction Failure and Diagnostic Di-
vergence

We now illustrate the epistemic diagnostics using a minimal example in the one-step pluralist bandit (1SPB)
setting. The goal is to demonstrate how abstraction can fail either sufficiency or stability, and how these
failures are detected by the ∆SEC and ∆SECplural signals.

Setup. Let the action set be A = {a1, a2, a3}, and let the agent consist of K = 3 internal experts. Each
expert provides a prediction vector Qk : A → [0, 1]. Consider two configurations of expert predictions:

Q(1) = [Q1 = [1.0, 0.0, 0.0], Q2 = [1.0, 0.0, 0.0], Q3 = [1.0, 0.0, 0.0]]

Q(2) = [Q1 = [1.0, 0.0, 0.0], Q2 = [1.0, 0.1, 0.0], Q3 = [1.0, 0.0, 0.0]]

Suppose the agent uses a simple averaging abstraction:

φ(Q) :=
1

K

K∑
k=1

Qk

and defines its soft best response using temperature τ = 0.2:

π∗(a) ∝ exp

(
1

τ
· φ(Q)(a)

)
Computing soft best responses. The averaged prediction vectors are:

φ(Q(1)) = [1.0, 0.0, 0.0]

φ(Q(2)) =

[
3

3
,
0.1

3
, 0

]
= [1.0, 0.0333, 0.0]

Plugging into the softmax yields:

π∗(· | Q(1)) ≈ softmax

(
1

0.2
· [1.0, 0.0, 0.0]

)
= softmax([5.0, 0.0, 0.0]) ≈ [0.88, 0.06, 0.06]

π∗(· | Q(2)) ≈ softmax([5.0, 0.167, 0.0]) ≈ [0.82, 0.12, 0.06]

KL divergence diagnostic. The induced divergence is:

∆SEC := KL
(
π∗(· | Q(1)) ∥π∗(· | Q(2))

)
≈ 0.019

This nonzero divergence reflects that φmasks a subtle but strategically relevant distinction: a small deviation
in expert 2’s belief increases the probability of a2 by a factor of 2.

If the agent sets ϵ = 0.01, this abstraction would fail the sufficiency criterion.

Testing epistemic stability. Now consider arbitration via weighted aggregation. Let:

W (1) = [1.0, 0.0, 0.0] (trust only expert 1)

W (2) = [0.0, 1.0, 0.0] (trust only expert 2)

Then:

π∗
W (1) = softmax

(
1

0.2
·Q1

)
= softmax([5.0, 0.0, 0.0]) ≈ [0.88, 0.06, 0.06]

π∗
W (2) = softmax

(
1

0.2
·Q2

)
= softmax([5.0, 0.5, 0.0]) ≈ [0.78, 0.16, 0.06]

The induced divergence is:

∆SECplural := KL(π∗
W (1) ∥π∗

W (2)) ≈ 0.041

This exceeds ϵ = 0.01, indicating instability: different arbitration weightings within the same abstraction
class produce different policies. The agent must abstain, even if the abstraction is sufficient. Here, abstention
is the exact analogue of the generals’ failure to coordinate when common knowledge is absent in the classic
Coordinated-Attack problem [Fagin et al., 1995, Prop. 6.1.2].
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Summary. This example illustrates how minor deviations in expert predictions or weighting can cause
soft best response policies to diverge. The diagnostics ∆SEC and ∆SECplural serve as principled tests for
epistemic readiness. Abstention is triggered when abstraction either discards decision-relevant distinctions
(sufficiency failure) or leaves arbitration unresolved (stability failure).

6 Computational Tractability

The exact computation of ∆SEC and ∆SECplural
requires optimization over continuous, high-dimensional sets,

which is generally intractable. We address this by developing sample-based approximations with provable
guarantees.

Both diagnostics admit sample-bounded estimators with runtime O((K + S)|A|), making previously
intractable checks linear-time subroutines. Sampling approximates ε-common knowledge 1 gates through
concentration bounds. The key insight is replacing exact optimization over continuous sets with sampling
plus Lipschitz-based error bounds.

Specifically, the softmax policy π∗
φ,τ is Lipschitz with constant L(τ) = |A|−1

2τ , enabling concentration
bounds: for δ-dense proposal distributions over φ−1(φ(Q)), sampling S pairs and computing the empirical
maximum KL divergence yields

Pr[∆SEC − ∆̂SEC ≤ Lδ] ≥ 1− 2|A|e−Sδ2/2

where ∆̂SEC is the sample-based estimator. The same bound applies to ∆SECplural
using finite covers of the

admissible weighting set W.
This computational tractability is crucial for deploying epistemic arbitration in real-time applications

where both principled decision-making and efficient performance are required.

7 Epistemic Parameter Sensitivity

The epistemic arbitration framework relies on two key parameters that govern its abstention behavior:
the divergence threshold ϵ > 0, and the temperature parameter τ > 0. These control, respectively, how
much behavioral variation is tolerated within an abstraction class, and how strongly the agent responds to
differences in aggregated predictions. Together, they define the resolution and sensitivity of the epistemic
gate. Parameters τ and ϵ control epistemic sensitivity; lower values increase abstention frequency but provide
stronger guarantees.
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A Appendix

A.1 Extensions and Future Directions

A.1.1 Multi-Step Extension with Feedback

While our core framework addresses one-step decisions, extension to sequential settings is natural. Suppose
the agent receives a binary signal s ∈ {0, 1} indicating (out-of-distribution) regret after acting or abstaining.
Each expert updates a trust weight wk via:

wk ←
exp
(
η [[s = 1]] Qk(at)

)
wk∑

j exp
(
η [[s = 1]] Qj(at)

)
wj

A.1.2 Strategic Experts and Mechanism Design

Future work could address experts who strategically misreport predictions, requiring truthful elicitation
mechanisms while preserving epistemic guarantees.

We provide comprehensive complexity bounds and practical performance analysis for all computational
routines in our framework.

A.2 Detailed Complexity Analysis

A.2.1 Algorithmic Complexity Bounds

Table 1 summarizes the asymptotic costs for the main algorithmic components.
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Routine Time Space

Approx∆SEC O(S · |A|) O(|A|)
Approx∆SECplural O(S · |A|) O(|A|)
Soft BR eval (π∗

φ,τ ) O(K · |A|) O(|A|)
Well-foundedness check O(S · |A|) O(|A|)

Table 1: Computational complexity bounds. S is the number of samples, K is the number of experts,
|A| is the number of actions. All bounds assume IEEE 754 double-precision arithmetic and pre-computed
exponentials where applicable.

A.3 Detailed Breakdown

Sample-bounded diagnostics. Both Approx∆SEC and Approx∆SECplural require:

• S policy evaluations, each taking O(|A|) time for softmax computation

• S KL divergence calculations, each taking O(|A|) time

• Finding the maximum over S values, taking O(S) time

This yields O(S · |A|) total time complexity.

Soft best response evaluation. Computing π∗
φ,τ (·|Q) requires:

• Aggregating K expert predictions: O(K · |A|)

• Computing softmax over |A| actions: O(|A|)

• Total: O(K · |A|)

Well-foundedness check. The complete epistemic gate requires both sufficiency and stability checks,
dominated by the O(S · |A|) diagnostic computations.

A.4 Optimizations and Special Cases

Early termination conditions. Several scenarios allow for early termination with O(|A|) complexity:

• Expert consensus: When maxi,j ∥Qi −Qj∥∞ < δ for small δ, skip diagnostic computation

• Empty preimage: When |φ−1(φ(Q))| = 1, automatically pass sufficiency test

• Extreme disagreement: When initial sampling reveals ∆̂SEC > 2ε, early rejection without full
sampling. Our ε-thresholds instantiate ε-common-knowledge gates, while eventual convergence re-
flects the ’eventual common knowledge’ achievable in lossy communication settings [Fagin et al., 1995,
Thm. 11.6.3].

Practical optimizations.

• Incremental sampling: Start with small S, increase until confidence threshold met

• Cached evaluations: Store policy evaluations for repeated abstraction classes

• Parallel computation: Both diagnostics are embarrassingly parallel over samples

• Adaptive precision: Use S = 100–1000 samples with δ = 0.1–0.01 for ≥ 99% confidence
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