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1 Abstract
In multi-agent learning, agents must form representations of their co-players. But modeling full policies
is often unnecessary, unstable, or intractable. Instead, we ask: What is the least and (closest to) all
I need to know about you in order to coordinate well? This paper presents a theoretical framework for
answering that question through a hierarchy of strategic abstractions— compressed, behaviorally grounded
representations of how one agent influences another’s incentives, outcomes, and available actions. Each layer
in the hierarchy (intent clarity, local incentive similarity, long-term outcome equivalence, structural world
dynamics) formalizes a distinct inductive bias for coordination under uncertainty. Together, they
define a principled, learnable, and architecture-agnostic substrate for robust coordination across all game.
Whether agents are biological or artificial, alignment emerges not from shared goals or architectures, but
from compatible compressions of what strategically matters. This work provides a foundation for align-
ing diverse agents through minimal mutual understanding, enabling scalable coordination across
environments, embodiments, and agent types.

2 Introduction
Motivation. Have you ever wondered why reinforcement learning agents have made such remarkable
progress in zero-sum games like Go, Chess, or Poker? Why strategic reasoning in competitive settings often
appears more tractable than in cooperative ones? At first glance, this may seem paradoxical—shouldn’t
helping others be easier than outsmarting?

But the key insight is this: selfish agents are often easier to predict. In zero-sum environments, each
agent is transparently optimizing for its own payoff. Their goals are self-contained, their actions tightly
coupled to their interests. In contrast, agents that intend to help—such as assistive robots or cooperative
LLMs—frequently underperform, miscoordinate, or even hinder the very partner they aim to support.

Why? Because "helpfulness" without strategic clarity is dangerous. When an agent’s actions do not
reliably reveal its intentions, or when its influence on the environment is inconsistent, it becomes harder to
coordinate—even if its motives are aligned. This gap between strategic influence and surface-level intent
lies at the heart of why collaboration is often more fragile than competition. Our framework embraces this
asymmetry by modeling not just what agents do, but how legibly they affect others’ decisions and outcomes.
Our framework attempt to answer this question: “How do your actions shape what I know and what
I can do in response (what is best for me to do in response)?”.

Ultimately, this framework lays the foundation for general-purpose coordination—across agents
and across all types of games that may be biological, artificial, or hybrid! By grounding trust in
behaviorally meaningful abstractions rather than surface-level signals, it enables agents to infer, adapt
to, and align with others through structured interaction. We envision this as a critical step toward
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collective alignment: the ability for diverse agents to build mutual understanding, anticipate one another’s
strategic influence, and coordinate effectively—even in the absence of shared architecture, language, or reward
functions.

Real Intro. Strategic coordination in multi-agent environments requires agents to form simplified yet
decision-relevant representations of their co-players’ behaviors. Modeling full co-player policies is often in-
tractable and unnecessary: agents rarely need to know exactly what their partner will do, only how
their behavior affects strategic outcomes. In this work, we propose a unified framework for strategic abstrac-
tion learning: a structured approach to compressing co-player policies into progressively refined,
behaviorally meaningful representations.

Rather than asking what an agent must know to coordinate optimally, we ask: Given what an agent
currently knows, is this representation sufficient to coordinate effectively—or is further re-
finement needed to disambiguate the co-player’s strategic influence? This question motivates a
hierarchy of abstractions that capture increasingly fine-grained notions of strategic relevance. Each level
introduces an inductive bias that filters, compresses, or refines co-player behavior according to the
demands of coordination.

We formalize this process using tools from reinforcement learning, information theory, and representation
learning. Specifically, we introduce:

• Intent Certainty via Mutual Information (IC) — a mutual information-based filter that identifies
co-policies with clear, high-confidence influence signal on the ego agent’s behavior.

• Strategic InfoNCE — a contrastive learning objective that learns compressed representations of co-
policies based on their short-term influence on ego agent actions (via soft best response distributions).

• SFR-SS (Successor Feature Representation Strategic Similarity) — a trajectory-level abstrac-
tion that groups co-policies according to the long-term features they induce, independent of reward.

• MASR-SS (Model-Aware Strategic Strategic Similarity) — a refinement that considers how
co-player policies affect the ego agent’s world dynamics, supporting planning and model-based gener-
alization.

• Strategic Refinement as Learning Dynamics — a principled method for measuring the reduction
in strategic ambiguity over time, as learned representations evolve from coarse filters to structured,
goal-relevant abstractions.

Together, these components define a general-purpose theory of strategic abstraction through
learning The resulting framework enables agents to coordinate robustly across behaviorally diverse part-
ners, adaptively refine its own beliefs, and act based on the minimum necessary knowledge for strategic
success. Our results provide both theoretical guarantees and practical tools for scalable, interpretable coor-
dination across fully cooperative (common-payoff), mixed-motive (general-sum), and competitive (zero-sum)
multi-agent settings. Crucially, by learning compressed representations that retain only strategically relevant
information, this framework also enables zero-shot transfer of learned policy abstractions across new
environments and partners—allowing agents to generalize coordination strategies without retraining from
scratch.

2.1 Connection to Social Sciences
The Role of Agreement Across Abstractions. Each level of abstraction in our framework captures a
distinct facet of strategic influence: intent certainty (IC), short-term behavioral incentives (strategic CPC),
long-term outcome trajectories (SFR-SER), and induced world structure (MASR-SER). When all levels
align—i.e., when the agent’s signal is clear, its behavior elicits predictable best responses, leads to
desirable long-run outcomes, and induces stable transition dynamics—then the ego agent can act with
confidence. This convergence constitutes a form of alignment across abstraction layers, indicating that
the co-player’s behavior is interpretable, coherent, and trustworthy.

© 2024 Sandy Tanwisuth. All Rights Reserved. Please contact for licensing, collaboration, or derivative use.



3 STRATEGIC EQUIVALENCE AS COMPRESSION

Conversely, if these abstractions diverge—e.g., if a co-player’s actions suggest cooperation but ultimately
undermine long-term goals or distort the transition model—then the agent should recognize the mismatch
and either abstain, seek clarification, or learn more. In this way, our framework offers an operational
and computational interpretation of trust: strategic consistency across abstraction layers provides a
data-driven, learnable basis for determining whether to coordinate with or adapt to a given co-policy.

Remark 1 (Stereotypes as Strategic Abstractions). Our framework also provides a computational lens on
the formation, utility, and refinement of stereotypes. Here, stereotypes are not treated as socially loaded
judgments, but as functional abstractions: compressed representations of co-player behavior that
retain only decision-relevant influence. Each abstraction layer—IIE, CPC, SFR, MASR—defines a
different form of stereotype, grounded in increasingly rich models of strategic interaction. Importantly, the
agent refines these stereotypes over time, measuring their predictive adequacy through entropy reduction
(∆SEC(t)). This offers a formal answer to when stereotypes are useful, when they should be updated, and
how they support trust under uncertainty.

Broader Impact
This work contributes foundational tools for building trustworthy, coordination-ready agents in open multi-
agent environments. By redefining alignment not in terms of fixed preferences or goals, but through a
hierarchy of learnable, strategic abstractions, we provide a new operational language for intent modeling,
influence detection, and trust calibration. Our framework supports scalable and interpretable coordination
across biological, artificial, and hybrid systems—including LLMs, robots, humans, and agents of unknown
or uncertain type.

One of the most pressing concerns in AI safety is not just individual misalignment, but multi-agent
miscoordination: the possibility that independently trained, goal-oriented agents will fail to coordinate
despite nominal alignment with their respective objectives. This includes risks identified in the “multi-polar
failure” scenario (Critch, 2020), where even well-intentioned agents act at cross-purposes due to insufficient
shared modeling or incompatible abstractions. Our theory directly addresses this by formalizing the minimum
conditions under which strategic understanding, anticipation, and trust become possible—and when further
refinement is required to prevent breakdowns.

In doing so, we offer a learnable substrate for what we might call computational coordination: the ability
to coordinate effectively under uncertainty, across boundaries of architecture, embodiment, or training data.
We envision this as a critical building block for long-term alignment: one that enables agents to recognize
when they are truly aligned—not because they have the same utility function, but because they converge on
the same actionable understanding of how to interact in a shared world.

3 Strategic Equivalence as Compression
Let Π−i be the space of co-player policies. The central idea behind strategic abstraction is to learn a function
h : Π−i → Rd that discards all information in π−j not relevant to the best-response set BRi (π−i). This
function induces a clustering of policies into what we call Strategic Equivalence Classes (SECs).

Definition 1 (Strategic Equivalence Class (this is definition 4.3 from SER paper Lauffer et al., 2023)). Two
policies π−i, π

′
−i are strategically equivalent, written π−i ∼i π

′
−i, if they induce the same best response set:

BRi (π−i) = BRi

(
π′
−i

)
.

This relation defines a partition of Π−i, forming the coarsest possible abstraction under which the best
response of agent i is invariant.

Remark 2. This structure mirrors the Information Bottleneck (IB) principle, where Z = BRi(πi) acts as
a compressed representation retaining only behaviorally relevant content.
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4 Soft Best Response and Strategic Divergence
Prose: We introduce the soft best response distribution as a principled way to model how real-world
agents, particularly those trained via reinforcement learning, respond to the strategies of their co-players in
a more realistic and tractable manner. Unlike the hard best response, which assumes perfect rationality
and yields a deterministic action choice, the soft best response accounts for bounded rationality, noise,
and uncertainty in strategic decision-making.

This stochastic formulation enables us to represent ambiguity in an agent’s incentives, which is crucial
when reasoning about coordination under limited information or in the early stages of learning. It also
supports smooth, differentiable computations, making it compatible with gradient-based learning algorithms
and contrastive representation objectives like InfoNCE.

We specifically choose the Boltzmann (or softmax) distribution because it provides a well-understood,
temperature-controlled interpolation between uniform random behavior (at high temperatures) and deter-
ministic maximization (as temperature approaches zero meaning that the agent is fully rationale). This
functional form has desirable mathematical properties—it is continuous, differentiable, and monotonic in
the Q-values—allowing us to define soft notions of best response that are both analytically tractable and
behaviorally interpretable. Moreover, it aligns naturally with established models of bounded ra-
tionality in behavioral game theory and biological reinforcement learning, offering a principled foundation
for defining soft strategic equivalence classes and reasoning about graded, rather than binary, distinctions in
strategic behavior.

Definition 2 (Soft Best Response Distribution). Let Qπ−i(ai) denote agent i’s expected value for action ai
under co-policy π−i, and let τ > 0 be a temperature parameter. The soft best response distribution is defined
as:

BRτ
i (ai | π−i) :=

exp(Qπ−i(ai)/τ)∑
aj

exp(Qπ−i(aj)/τ)

This defines a probability distribution over agent i’s action space Ai.

Explanation. We now describe the components of the soft best response distribution in detail:

• Qπ−i(ai) ∈ R denotes the expected return to agent i when taking action ai ∈ Ai against co-player
policy π−i ∈ Π−i, under a fixed environment and reward structure. Formally, this quantity represents
the value of agent i’s action under the assumption that the other agents follow the joint policy π−i,
and that the agent behaves according to a one-step deviation from a default policy by playing ai.

This value captures how favorable a given action ai is in expectation, taking into account both
the stochastic dynamics of the environment and the interactive behavior of co-players. We assume
that Qπ−i(ai) is finite and bounded, typically within the reward range defined by the environment
(e.g., if per-timestep rewards lie in [rmin, rmax], then so does Qπ−i(ai)). These values are fundamental
to strategic reasoning and learning: they allow the agent to rank actions and compute probabilistic
preferences over them through mechanisms like softmax, which in turn enables smooth adaptation in
uncertain or changing environments.

• BRτ
i (ai | π−i) ∈ [0, 1] defines a probability distribution over agent i’s action space Ai, where actions

with higher Q-values under co-policy π−i are assigned higher probabilities. The softmax function used
here is strictly positive and normalized, which guarantees that every action ai ∈ Ai receives non-zero
probability for any finite Qπ−i(ai) and temperature τ > 0. This ensures the distribution has full
support over Ai, meaning that the agent never entirely rules out any action.

This full support property is especially important in early stages of learning or when facing high
uncertainty: it allows the agent to maintain exploratory flexibility, sampling all available actions while
still biasing toward higher-value ones. Over time, as the agent becomes more confident (e.g., due to
better estimates of Qπ−i), the distribution can naturally become more peaked, smoothly transitioning
toward deterministic behavior as τ → 0. Thus, the soft best response not only represents graded
preferences but also provides a built-in mechanism for balancing exploitation and exploration.
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• τ > 0 is a scalar temperature parameter that controls the entropy of the distribution. As τ → 0, the
distribution becomes sharply peaked on the highest-valued action, recovering the deterministic best
response. As τ → ∞, the distribution approaches the uniform distribution over Ai, reflecting maximum
entropy and indifference between actions.

Maximum entropy here corresponds to maximum uncertainty. From the perspective of agent i,
this uncertainty reflects a lack of useful information about which action is preferable. In such a case,
the agent behaves as though all actions are equally likely to be optimal, leading to uniform random
exploration. This interpretation aligns with early learning phases, where the agent may play arbitrary
actions and learn from the outcomes.

• The soft best response operator defines a mapping from co-player policies π−i ∈ Π−i to probability
distributions over actions:

BRτ
i : Π−i → ∆(Ai)

where ∆(Ai) denotes the probability simplex over Ai.

Intuitively, this means that for any given co-player strategy π−i, agent i responds not with a single
deterministic action, but with a distribution over actions that reflects both the expected values of each
action and the agent’s uncertainty (as modulated by τ). This formulation captures the idea that even
when an agent has preferences over actions, it may still randomize among them when those preferences
are weak or noisy, or when strategic exploration is beneficial.

This soft best response distribution provides a continuous and differentiable relaxation of the classic (hard)
best response operator. It captures notions of bounded rationality and stochasticity in strategic behavior, and
forms the basis for defining soft strategic equivalence relations and learning-based coordination strategies.

Prose: Intuitively, a low strategic divergence implies that the two co-player policies lead to nearly identical
preferences over actions for agent i, while a high divergence indicates substantial differences in how agent i
would act in response. Crucially, due to the softmax’s invariance to additive shifts in Q-values (Lemma 1), the
strategic divergence depends only on the relative preferences among actions—not their absolute magnitudes.
This interpretation motivates the use of soft BR distributions as a behaviorally grounded, differentiable
proxy for measuring strategic similarity. Theorem 1 formalizes this connection: if two co-player policies
induce identical soft best response distributions (i.e., zero KL divergence), they must induce the same hard
best response set, and therefore belong to the same strategic equivalence class (under a specific condition).

Definition 3 (Strategic Divergence). Let π−i, π
′
−i ∈ Π−i be two co-player policies. Their strategic divergence

from the perspective of agent i is defined as:

SDτ
i (π−i, π

′
−i) := DKL

(
BRτ

i (π−i) ∥BRτ
i (π

′
−i)

)
Lemma 1 (Softmax Invariance to Additive Shift). Let Q ∈ Rn be a vector of real-valued scores. The softmax
over Q with temperature τ is invariant to additive shifts:

Softmaxτ (Q+ c · 1) = Softmaxτ (Q) for any constant c ∈ R

Proof. We compute:

Softmaxτ (Qi + c) =
exp((Qi + c)/τ)∑
j exp((Qj + c)/τ)

=
exp(Qi/τ) · exp(c/τ)∑
j exp(Qj/τ) · exp(c/τ)

= Softmaxτ (Qi)

Remark 3. Two Q-vectors that differ only by an additive constant are behaviorally equivalent under the soft
best response distribution. That is, if Q = Q′ + c · 1, then Softmaxτ (Q) = Softmaxτ (Q′). This justifies that
soft best responses encode only relative preferences between actions, not absolute values.
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Theorem 1 (Zero Strategic Divergence Implies Strategic Equivalence). Let π−i, π
′
−i ∈ Π−i be co-player

policies such that:
DKL

(
BRτ

i (π−i) ∥BRτ
i (π

′
−i)

)
= 0

Then agent i’s best response sets are equal:

BRi(π−i) = BRi(π
′
−i) and hence π−i ∼i π

′
−i

Proof. Let p(ai) := BRτ
i (ai | π−i) and q(ai) := BRτ

i (ai | π′
−i). By assumption, DKL(p∥q) = 0, which implies

p(ai) = q(ai) for all ai.
Since soft best responses are softmax distributions over Q-values, this means that:

exp(Qπ−i(ai)/τ)∑
j exp(Q

π−i(aj)/τ)
=

exp(Qπ′
−i(ai)/τ)∑

j exp(Q
π′
−i(aj)/τ)

This equality holds only when:

Qπ−i(ai) = Qπ′
−i(ai) + c ∀ai, for some c ∈ R

By Lemma 1, this shift-invariance implies identical best response sets:

argmax
ai

Qπ−i(ai) = argmax
ai

Qπ′
−i(ai)

Hence, BRi(π−i) = BRi(π
′
−i), and π−i ∼i π

′
−i.

Explanation. Theorem 1 establishes that if two co-player policies induce exactly the same soft best re-
sponse distribution for agent i, then they must also induce the same hard best response. This condition
holds if and only if the Q-values induced by the two policies differ by a constant shift (i.e., they preserve the
same relative preferences over actions).

Example 1 (Overcooked). Imagine two co-player policies: one always fetches tomatoes, the other
fetches tomatoes 95% of the time and onions 5% of the time. From agent i’s perspective, both lead to very
similar Q-values for deciding when and whether to fetch an onion. If the Q-values differ only by a constant
offset (e.g., one just consistently completes tasks slightly faster), then the soft best responses will be identical,
and Theorem 1 applies. But if the slight behavioral variation causes different task timing incentives (e.g.,
when to deliver), then even with similar soft BRs, the hard BRs could diverge—and Theorem 1 would no
longer hold.

In short, Theorem 1 highlights an important connection between soft and hard strategic reasoning. But
it only applies when Q-values differ by a constant. In practice, this distinction matters in near-tie or noisy
environments, where soft preferences may mask strategic divergence.

Definition 4 (Soft Strategic Equivalence). Two co-policies π−i, π
′
−i ∈ Π−i are said to be ε-soft strategically

equivalent if:
DKL(BRτ

i (π−i)∥BRτ
i (π

′
−i)) ≤ ε

Explanation. This definition introduces a relaxed notion of strategic equivalence based on the similarity
between soft best response distributions. It formalizes the idea that two co-player policies π−i, π

′
−i ∈ Π−i

can be considered behaviorally similar from agent i’s perspective if they induce nearly identical soft best
response distributions.

• π−i, π
′
−i ∈ Π−i: These are two co-player policies—i.e., strategies used by all agents other than agent i.

Each co-policy defines how agent i’s partners behave in the environment.

• BRτ
i (π−i) ∈ ∆(Ai): This is agent i’s soft best response distribution to π−i, defined over the action space

Ai. It represents a stochastic policy computed via a softmax over expected Q-values (see Definition
2), and lies in the probability simplex ∆(Ai).
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• DKL(·∥·) ∈ [0,∞): This is the Kullback–Leibler divergence between two probability distributions. It
quantifies how different the induced soft best responses are. A divergence of 0 means the distributions
are identical; larger values imply greater behavioral dissimilarity.

• ε ∈ R≥0: This is a user-defined tolerance threshold that determines how close the soft best response
distributions must be for the two co-policies to be considered equivalent. Smaller values correspond to
stricter equivalence.

Remark 4 (Choosing the Soft Equivalence Tolerance ε). The choice of ε in the definition of ε-
soft strategic equivalence determines the level of behavioral tolerance allowed when grouping co-player
policies into equivalence classes. It plays a crucial role in balancing robustness to noise against fidelity
to strategic distinctions. The appropriate value of ε may depend on several factors:

– Softmax Temperature τ : Higher values of τ produce smoother soft best response distribu-
tions that are less sensitive to Q-value variation. In this case, ε should be set smaller to avoid
over-grouping dissimilar policies. Conversely, lower τ makes the distributions sharper and more
sensitive, allowing for a larger ε.

– Agent Rationality and Policy Noise: In environments where agents are boundedly rational
or where behavioral noise is common (e.g., due to exploration or human variability), a larger ε
may be appropriate to avoid overreacting to minor deviations that do not reflect strategic intent.

– Empirical Distribution of KL Divergences: If soft best response distributions are computed
across a dataset of co-policies, the empirical distribution of pairwise KL divergences can be used
to calibrate ε. For example, one may select ε as a fixed quantile or based on a clustering threshold.

– Application-Specific Precision Requirements: In safety-critical or high-stakes settings where
precise distinctions in agent behavior matter, a smaller ε is preferred. In contrast, for tasks that
emphasize generalization or coordination robustness, a more permissive ε may be more effective.

In practice, ε can be treated as a tunable hyperparameter and selected via cross-validation or sensitivity
analysis. Its value controls the granularity of the induced clustering over co-player policies and therefore
the robustness and expressiveness of the learned strategic representations.

Intuitively, this definition says that two co-player policies are ε-soft strategically equivalent if they in-
duce nearly indistinguishable soft best responses from the ego agent’s perspective. That is, from agent i’s
perspective, the two co-policies are effectively interchangeable for purposes of decision-making, up to a small
tolerance. This soft equivalence is particularly useful in noisy or ambiguous environments where small devi-
ations in behavior (e.g., due to bounded rationality or exploration) should not lead to strict reclassification
of strategic intent.

Implications for Learning under Uncertainty and Connections to Representation Learning.
Definitions 2 and 3 introduced the soft best response distribution and strategic divergence as smooth, prob-
abilistic tools for quantifying how agent i’s behavior changes in response to variation in co-player policy
π−i. Theorem 1 then established that if two co-player policies induce identical soft best response distribu-
tions, they also yield the same hard best response—and hence belong to the same strategic equivalence class.
Crucially, this holds when the Q-values differ only by an additive constant, which softmax effectively ignores.

This softmax invariance has several implications for learning in practice:

• Numerical stability: shifting Q-values by a constant is harmless and commonly done in deep rein-
forcement learning pipelines for normalization or stability.

• Bounded rationality: the softmax formulation captures decision stochasticity due to uncertainty or
cognitive limitations, aligning with models of bounded rationality in both behavioral game theory and
practical MARL.
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• Compression for representation learning: since soft best response distributions depend only
on the relative ordering of Q-values, they implicitly define an abstraction over the co-policy space.
Policies that induce behaviorally indistinguishable soft BRs can be grouped into equivalence classes
that preserve only the decision-relevant information.

This perspective motivates a representation learning objective grounded in strategic reasoning: if we wish
to learn a compact embedding of co-player behavior that preserves distinctions relevant for ego coordination,
then we should aim to separate co-policies that induce different soft best responses. This leads us natu-
rally to define a contrastive learning objective—specifically, a strategic InfoNCE loss—that aligns co-player
representations with their induced soft BR distributions. This connection is formalized in the next definition.

5 Contrastive Strategic Repesentation Learning
Connection. The preceding definitions and theorem establish a soft, information-theoretic foundation
for reasoning about strategic equivalence. Definition 2 introduces the soft best response distribution BRτ

i ,
which captures how agent i’s action preferences vary with respect to the co-player policy π−i. Definition
3 introduces the strategic divergence SDτ

i as a fine-grained, continuous measure of behavioral dissimilarity,
and Theorem 1 formalizes when identical soft best responses imply hard strategic equivalence.

Intro. Our next goal is to learn a compressed representation h(π−i) of the co-player policy space that
preserves these behavioral distinctions. In particular, we want the embedding space to reflect strategic
distinctions relevant to agent i’s decision-making. To achieve this, we adopt a contrastive learning framework
analogous to Contrastive Predictive Coding [CPCEq.1] Oord et al., 2019.

At a high level, CPC seeks to learn embeddings by predicting future representations zt+k from a context
ct using a density ratio:

f(x, c) ∝ p(x|c)
p(x)

[CPC Eq. 2]

Rather than predicting the future, our setting involves inferring best responses. The underlying principle is
the same: we aim to maximize mutual information between an observed strategic response (e.g., a sampled
action from BRτ

i (π−i)) and its source policy π−i, while minimizing similarity to irrelevant (negative) samples.

Intuition. In contrastive predictive coding, the goal is to learn embeddings that preserve information
useful for predicting future outcomes. In contrast to the original InfoNCE that asks “what future does this
context lead to?”, we’re asking “what kind of partner policy does this action suggest?” In our setting,
rather than predicting future observations, we aim to infer the underlying co-player policy that best explains
the observed actions. Specifically, we wish to learn a representation h(π−i) that maximizes the mutual
information between a sampled strategic response (e.g., an action a+ ∼ BRτ

i (π−i)) and the co-policy that
induced it, while minimizing similarity to actions drawn from irrelevant or strategically dissimilar co-policies.

Example (Overcooked). This intuition becomes particularly salient in multi-agent environments like
Overcooked or Cleanup. In Overcooked, for example, consider a teammate who always navigates clockwise
in a narrow circuit kitchen. Observing this pattern, a best-responding agent should infer that the co-player
belongs to a class of policies that commit to clockwise motion all the time, and thus adapt by also moving
clockwise to avoid interference. A contrastive loss would help cluster such co-player policies together, because
they elicit similar best responses.

Example (Cleanup). On the other hand, environments like Cleanup expose more subtle mismatches.
Suppose an agent initially signals cooperation by standing near the river, implicitly suggesting a willingness
to help with the scarce cleaning task. However, when a valuable apple spawns, the same agent quickly takes
it instead of cleaning. This action contradicts what their earlier behavior implied. A contrastive objective
helps disambiguate such cases: it encourages the embedding h(π−i) to be updated based on the actual
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observed response (taking the apple), pulling the representation toward a more self-serving class of policies
if this pattern persists.

However, it is also important to recognize that boundedly rational agents can make occasional mis-
takes—or simply act opportunistically without violating their underlying cooperative intent. For example, it
may have been locally convenient for the agent to collect the apple because it spawned very close by. Strategic
CPC naturally accommodates this type of ambiguity: by relying on soft best response distributions rather
than hard classifications, it learns to update co-player representations with a degree of tolerance. This makes
it more robust to noisy observations and one-off deviations, enabling a smoother and more reliable clustering
of strategic behavior over time.

Connection. These examples demonstrate why contrastive learning is well-suited to the problem of strate-
gic abstraction. It allows agents to cluster co-player policies not based on surface-level signals or prior
expectations, but based on the actual strategic incentives they induce—as revealed through best response
behavior.

Definition 5 (Strategic InfoNCE loss). To do this, we define a Strategic InfoNCE loss that mirrors the
structure of CPC’s loss (Equation 4 in the CPC paper), replacing future samples with soft BR samples:

LInfoNCE = −E

[
log

f(a+, h(π−i))∑
j f(a

−
j , h(π−i))

]
where f is a similarity function (e.g., dot product or cosine similarity), a+ ∼ BRτ

i (π−i) is a positive sample
from the true soft best response, and a−j are negatives sampled from the responses to other co-player policies.
The loss encourages embeddings h(π−i) to cluster policies that induce similar soft best responses, while pushing
apart those with divergent incentives.

Explanation. The function f(a, h(π−i)) scores how well the action a aligns with the embedding of the
policy π−i. If the positive action a+ is highly compatible with the embedding h(π−i), and the negatives
are less so, the loss is minimized. As a result, the learned representation encourages co-player policies that
induce similar best response distributions to lie closer in embedding space, while separating those that induce
distinct responses. This process creates a representation space that is strategically meaningful: policies that
lead to the same coordination strategies for agent i are grouped together, enabling efficient generalization,
adaptation, and recognition of partner behavior during interaction.

In effect, this contrastive objective learns a strategic representation space where co-policies that induce
similar distributions over agent i’s actions are embedded nearby. Thus, the learned embedding compresses
the co-policy space into clusters that preserve best-response equivalence—a key prerequisite for coordination,
imitation, and adaptation in multi-agent learning settings.

Lemma 2 (InfoNCE Minimization Implies Embedding Consistency). Let h : Π−i → Rd be a learned em-
bedding function trained to minimize the Strategic InfoNCE loss. Then, under sufficient optimization and
representative sampling, minimizing LInfoNCE implies that co-policies inducing similar soft best responses
are embedded close together:

π−i ≈ π′
−i ⇒ ∥h(π−i)− h(π′

−i)∥ is small,

where ≈ denotes behavioral similarity under soft best response distributions, e.g.,

DKL(BRτ
i (π−i)∥BRτ

i (π
′
−i)) ≤ ε,

and the norm may be taken as Euclidean or cosine distance depending on the similarity function f used in
the contrastive loss.

Remark 5. This lemma formalizes the intuition that minimizing the Strategic InfoNCE loss encourages
embeddings to reflect the behavioral structure of the co-policy space. That is, policies which induce similar
strategic incentives for agent i (as captured by their soft best response distributions) will be mapped to similar
points in the embedding space Rd. This underpins the view of h as learning a soft clustering over strategic
equivalence classes.
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Connection. The Strategic InfoNCE loss introduced above is more than just a heuristic objective for
learning embeddings, it is a principled estimator of strategic structure. Theorem 2 formalizes this connection
by showing that minimizing LInfoNCE maximizes a lower bound on the strategic mutual information between
the co-player policy π−i and the induced action ai ∼ BRτ

i (π−i). This mutual information quantifies how
much information about the co-player’s policy is preserved in the distribution over ego-agent responses. A
high value indicates that the ego-agent’s action distribution is highly dependent on the co-player’s strategic
type.

By minimizing the contrastive loss, we encourage the learned embedding h(π−i) to retain the distinctions
that are most informative for predicting best responses. In this way, the representation function approximates
a soft clustering over the co-policy space, where policies that induce indistinguishable soft BRs (and thus
low KL divergence) are embedded close together. This naturally aligns with the notion of soft strategic
equivalence classes, and provides a scalable, differentiable mechanism for inferring them from interaction
data.

Theorem 2 (Mutual Information Lower Bound). Minimizing LInfoNCE maximizes a lower bound on the
strategic mutual information:

IBR := I (ai;π−i) = Eπ−i [DKL (BRτ
i (π−i) ∥P (ai))]

Thus, contrastive representation learning approximates a soft clustering over SECs.

Explanation. This theorem provides a formal justification for using the Strategic InfoNCE loss as a
learning objective. It states that minimizing LInfoNCE is equivalent to maximizing a lower bound on the
mutual information I(ai;π−i) between the co-player policy and the ego agent’s soft best response action.
This quantity, which we refer to as strategic mutual information, measures how much agent i’s response
reveals about the identity or behavioral type of the co-player policy.

Let us break down each component: the expectation Eπ−i is taken over a distribution of co-player policies,
and BRτ

i (π−i) denotes the soft best response distribution induced by each policy (Definition 2). The KL
divergence compares this distribution to the marginal action distribution P (ai), which captures the average
response across all policies. When BRτ

i (π−i) differs significantly from P (ai), the co-player policy induces a
unique strategic response, contributing to a higher mutual information score.

Therefore, minimizing LInfoNCE encourages embeddings h(π−i) that preserve distinctions in how different
co-player policies affect agent i’s action preferences. In effect, this process induces a soft clustering over the
co-policy space, where policies that induce similar strategic incentives are embedded nearby. As such,
this theorem provides both a theoretical foundation and an operational criterion for learning behaviorally
meaningful representations that approximate soft strategic equivalence classes.

6 Intent Certainty (IC) as an Strategic Ambiguity Filter
Before learning long-term strategic abstractions, we first identify which co-player policies emit reliable and
unambiguous behavioral signals. We formalize this using Intentional Information Equivalence (IC), which
measures the certainty or intentionality of a policy based on its influence on the ego agent’s action distribu-
tion.

Definition 6 (Intent Certainty via Mutual Information.). Let π−i ∈ Π−i denote a co-player policy and
ai ∈ Ai the ego agent’s action. We define the intentional information score as the mutual information
between the co-policy and the ego action:

IC(π−i) := I(ai;π−i) = Eπ−i
[DKL (p(ai | π−i) ∥ p(ai))] .

This measures how much observing the co-player policy reduces uncertainty over the ego agent’s best response.
Policies that induce highly certain or sharply peaked best responses yield higher IC scores.

Definition 7 (Contrastive Estimation of IC.). We estimate IC(π−i) via contrastive learning. Let hIC(π−i) be
an embedding of the co-policy, and define a loss function f(ai, hIC(π−i)). The contrastive loss for intentional
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influence is:

LIC = −E

[
log

f(a+i , hIC(π−i))∑
j f(a

−
i , hIC(π−i))

]
,

where a+i ∼ BRτ
i (π−i) is a soft best response action and a−i ∼ BRτ

i (π−j) for j ̸= i are sampled negatives.

Definition 8 (Intent Filtering.). We retain only co-player policies whose mutual information score exceeds
a predefined threshold:

Pintent := {π−i ∈ Π−i | IC(π−i) ≥ θintent} .

This forms the set of high-certainty co-policies that are passed to the next stage of representation learning.

By filtering out policies with ambiguous or noisy influence, this stage ensures that downstream abstraction
(e.g., via SFR-SER) is grounded in interpretable and robust behavioral signals.

Remark 6 (Interpreting Intent Certainty). It is important to note that IC does not measure whether a co-
player is cooperative or adversarial—it measures whether they are strategically clear. For example, a policy
that always cooperates and one that always defects may lead to opposite behaviors, but both produce a highly
predictable influence on the ego agent’s decision-making. Under IC, they are considered intentionally
equivalent because each yields a sharply peaked distribution over the ego agent’s best response.

At this level of abstraction, we are not asking “what is this agent trying to achieve?” but rather
“how certain am I about what I should do in response?” IC serves as an intent filter that distin-
guishes between agents with high strategic influence (i.e., they reliably shape ego behavior) and those that
are ambiguous, inconsistent, or noisy. It provides a principled, learnable signal of who the agent is in terms
of their capacity to influence: not what their intentions are, but how clearly those intentions are
expressed.

7 Long-term Strategic Abstraction via Successor Representation
Motivation. While soft strategic equivalence provides a powerful framework for clustering co-player poli-
cies based on short-term incentives—i.e., how they influence the ego agent’s immediate best response—it
does not fully capture alignment in long-term intent. Two policies may appear equivalent under soft best
response (e.g., inducing the same action distribution), yet lead to very different trajectories and long-term
consequences. This distinction becomes especially important in environments with delayed rewards, sparse
feedback, or temporally extended goals. For example, in the Cleanup environment, a co-player who hovers
near the river may initially appear to be cooperative—inducing the ego agent to fetch apples while assuming
the partner will clean. However, if that partner consistently ignores the cleaning task over time and only
takes the apple when it spawns nearby, their behavior, though superficially aligned, ultimately undermines
the shared goal of maintaining cleanliness. Despite similar short-term incentives, the long-term outcomes
induced by such a policy diverge from those of a truly cooperative partner who sacrifices short-term re-
wards to clean proactively. This highlights the need for a representation that captures the full trajectory of
strategic consequences, not just momentary coordination patterns. To reason robustly about such cases, we
require a refinement of strategic equivalence that incorporates an agent’s impact on future outcomes. We
introduce SFR-SER (Successor Feature Representation Strategic Equivalence Relation) to address this: by
comparing the long-term successor features induced by co-player policies, we gain a representation of their
strategic trajectory. This allows us to reason not only about how a partner influences our current behavior,
but also about what long-term outcomes their behavior is driving us toward. Intuitively, the successor
feature-based strategic equivalence relation (SFR-SER) asks the question: “Do these co-player policies
result in the same long-term consequences for me, under arbitrary goals?” While soft strategic
equivalence focuses on short-term incentives by comparing induced best response distributions, SFR-SER in-
corporates trajectory-level reasoning by evaluating whether different co-policies lead the ego agent to similar
long-term state occupancies. This perspective allows us to group together co-policies that may differ in im-
mediate behavior but are aligned in their long-term strategic consequences. In doing so, SFR-SER provides
a principled lens for detecting long-term alignment or misalignment especially in multi-agent coordination
where commitment to the same goal may take different forms as stated in the Cleanup example.
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Long-Horizon Strategic Abstraction via Successor Feature Representations. To reason about
the long-term influence of a policy on the environment, we consider the successor feature representation
(SFR) framework, which captures the distribution over features encountered under a policy. Specifically, the
ξ-function encodes the cumulative discounted visitation density over features ϕ ∈ Φ under policy π:

ξπ(s, a, ϕ) =

∞∑
k=0

γk p(ϕt+k = ϕ | st = s, at = a; π).

This representation serves as a reward-independent signature of a policy’s long-term behavior in the feature
space. It characterizes the full trajectory-level consequences of selecting action a in state s and continuing
under policy π, regardless of the task-specific reward function. Importantly, the ξ-function captures not just
which states are visited, but which semantic features those states instantiate, enabling transfer and reasoning
about abstract goals [SFR Eq. 11] Reinke and Alameda-Pineda, 2022.

Connection. We now define a strategic equivalence relation based on SFR, which we term SFR-SER. This
abstraction groups co-player policies according to whether they induce indistinguishable long-term outcomes
for the ego agent, measured through their ξ-function

Definition 9 (SFR-based Strategic Similarity (SFR-SS)). Let πi be the ego agent’s policy and π−i, π
′
−i ∈ Π−i

be two co-player policies. We say π−i ∼SFR
i π′

−i if, for all states s ∈ S, actions a ∈ Ai, and features ϕ ∈ Φ,
the successor feature representations experienced by the ego agent are equivalent:

ξπi,π−i(s, a, ϕ) ≈ ξπi,π
′
−i(s, a, ϕ).

That is, the co-player policies are SFR-strategically equivalent if they induce the same long-run feature
distributions from the perspective of agent i executing policy πi.

Explanation. This definition introduces a trajectory-aware notion of strategic equivalence, grounded in the
successor feature representation (SFR) framework. It formalizes when two co-player policies π−i, π

′
−i ∈ Π−i

are indistinguishable to the ego agent i, based on their long-term influence on the environment.

• πi ∈ Πi: The fixed policy of the ego agent.

• π−i, π
′
−i ∈ Π−i: Two co-player policies under comparison. These may differ in their surface behavior

but may nonetheless have the same long-term impact on agent i’s experience.

• ξπi,π−i : S×Ai×Φ → R≥0: The successor feature representation for agent i under joint policy (πi, π−i).
It defines the discounted cumulative density over features ϕ ∈ Φ encountered when taking action a ∈ Ai

in state s ∈ S, and continuing under (πi, π−i).

• ξπi,π−i(s, a, ϕ) =
∑∞

k=0 γ
k p(ϕt+k = ϕ | st = s, at = a;πi, π−i): This expansion makes clear that ξ

encodes the full discounted trajectory over feature space—not merely next-step transitions or one-step
predictions.

• Φ: The feature space, typically describing semantically relevant state aspects (e.g., object properties,
roles fulfilled, goals achieved). The SFR aggregates future visitation information over this space.

• π−i ∼SFR
i π′

−i: Strategic equivalence under SFR, from the perspective of agent i. This relation holds
if the co-player policies induce indistinguishable ξ-trajectories for all ego actions and states.

Intuition. This definition abstracts away from the literal actions of co-players and focuses instead on their
long-run influence on the ego agent’s future feature occupancy. If π−i ∼SFR

i π′
−i, then for all practical

purposes, agent i experiences the same future distribution over semantically meaningful features regardless
of whether it is paired with π−i or π′

−i. Thus, the two policies can be treated as strategically interchangeable.
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Example (Overcooked). For example, in the Overcooked environment, consider two co-player policies:
one that always moves clockwise to deliver onions to the soup pot, and another that moves counterclockwise
but ultimately delivers onions with similar timing and consistency. Although their action-level behavior
differs, both policies reliably enable the ego agent to cook and serve dishes at the same rate. The ξ-function
over features such as “onion delivered,” “pot filled,” and “dish served” is nearly identical across both co-
policies. From the ego agent’s perspective, they are strategically interchangeable.

Notice that while the examples use hand-coded, semantically meaningful features for intuitive explana-
tion, the actual feature representations used in practice may be much more granular or abstract: e.g., “the
agent is standing at grid position (2,5) and facing left.” These low-level or latent features can still support
meaningful strategic abstraction when aggregated over time through the successor feature representation.

Example (Cleanup). Similarly, in the Cleanup environment, consider a co-player that proactively cleans
the river before collecting apples, and another that collects one apple before beginning to clean. While
their initial actions differ, both policies ensure the river is cleaned early enough to sustain apple spawning.
As a result, the ego agent experiences the same trajectory of meaningful features—“river cleaned,” “apple
collected,” and “goal reached”—over time. These policies induce similar ξ-functions and belong to the same
SFR-based strategic equivalence class.

These examples highlight how SFR-SER captures the essence of long-term cooperation: it abstracts from
transient behavioral variability and focuses instead on the co-player’s impact on the agent’s strategic future.

Why this matters. This formulation enables abstraction and compression: multiple co-player policies
may behave differently at the action level, yet induce the same ξ-function from the ego’s perspective. This
allows for learned representations h(π−i) that preserve only the aspects of the co-policy relevant to the
ego agent’s strategic outcomes. It also supports generalization across behaviorally diverse but strategically
aligned co-players.

Definition 10 (SFR-Consistent Representation). A representation function h : Π−i → Rd is said to be
SFR-consistent with respect to ego policy πi if for all co-policies π−i, π

′
−i ∈ Π−i,

∥h(π−i)− h(π′
−i)∥ is small whenever DKL

(
ξπi,π−i(s, a, ·) ∥ ξπi,π

′
−i(s, a, ·)

)
≤ ε ∀s, a.

Theorem 3 (Representation Consistency Implies Approximate SFR Equivalence). Let h : Π−i → Rd be an
SFR-consistent representation function with respect to a fixed ego policy πi. Suppose there exists ε > 0 such
that for all co-player policies π−i, π

′
−i ∈ Π−i,

∥h(π−i)− h(π′
−i)∥ ≤ δ ⇒ DKL

(
ξπi,π−i(s, a, ·) ∥ ξπi,π

′
−i(s, a, ·)

)
≤ ε ∀s ∈ S, a ∈ Ai.

Then, all policies within a radius-δ neighborhood in the representation space are ε-soft strategically equiv-
alent under SFR:

∥h(π−i)− h(π′
−i)∥ ≤ δ ⇒ π−i ∼SFR(ε)

i π′
−i.

8 World Dynamics Compression via Multi-agent Successor Repre-
sentation

Model-Aware Strategic Similarity (MASR-SS). While SFR-SER captures long-term outcome equiv-
alence through feature occupancy, it assumes the environment dynamics remain fixed. However, in many
multi-agent settings, the co-player’s policy not only shapes incentives but also modifies the transition dy-
namics experienced by the ego agent. For example, a partner who blocks key pathways in Overcooked, or
who delays river cleaning in Cleanup, changes the effective affordances available to the ego agent—altering
which actions are possible, efficient, or safe.

To capture these effects, we introduce Model-Aware Strategic Equivalence (MASR-SER): a model-aware
strategic equivalence relation based on multi-agent successor representations, a refinement of SFR-SER that
clusters co-player policies based on their induced transition models. Two policies are MASR-equivalent if
they produce the same transition dynamics for the ego agent, regardless of the long-run feature outcomes.
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This allows the agent to reason not only about what co-players are trying to achieve, but how their behavior
structurally modifies the environment. MASR-SER supports planning, simulation-based reasoning, and
fine-grained generalization across behaviorally similar but dynamically distinct partners.

Definition 11 (Model-Aware Strategic Equivalence (MASR-SER)). Let πi ∈ Πi be the ego agent’s fixed
policy, and let π−i, π

′
−i ∈ Π−i be two co-player policies. We say that π−i ∼MASR

i π′
−i (i.e., they are MASR-

strategically equivalent from the perspective of agent i) if the induced transition dynamics experienced by the
ego agent under both co-policies are equivalent:

p(s′ | s, ai;π−i) = p(s′ | s, ai;π′
−i) ∀s ∈ S, ai ∈ Ai, s

′ ∈ S.

That is, the two policies are MASR-strategically equivalent if the world evolves in the same way for agent
i, regardless of which policy it is paired with.

Intuition. MASR-SER answers the question: “Do these two co-player policies give me the same
experiential world?” In other words, “will my environment respond in the same way when I
act—regardless of which co-player I’m paired with?” This goes beyond shared goals or outcome
trajectories (as in SFR-SER) to encompass how a co-player modifies the transition dynamics themselves.

Example (Overcooked). Imagine two co-player policies in the Cramped Room layout. One agent moves
quickly and predictably through the hallway without blocking. Another moves with slight delays but never
obstructs the ego agent’s path. Both result in the ego agent having unobstructed access to key stations,
inducing nearly identical transition dynamics. Despite timing differences, they are MASR-equivalent because
they create the same experiential structure.

By contrast, a third policy that unpredictably pauses in the hallway forces the ego agent to reroute or
wait, thus altering the transition probabilities conditioned on ego actions. This breaks MASR equivalence,
even if the long-term outcomes (e.g., dish delivered) remain similar.

Example (Cleanup). Consider two co-player policies: one that cleans the river immediately and one that
cleans it after picking up a nearby apple. Both result in the river being clean soon enough for apples to
spawn regularly. From the ego agent’s perspective, the environment responds similarly over time to its apple-
fetching actions—they can expect apples to be present and accessible. These policies are MASR-equivalent.

However, a third policy that neglects the river entirely changes the environment’s effective model: apple
spawn rates decrease, and the ego agent’s actions now lead to different downstream transitions. This policy
belongs to a different MASR-equivalence class.

9 Strategic Refinement as Learning Dynamics
Motivation. Strategic abstraction is not static — it evolves as the agent interacts, observes, and updates
its representations of others. In this section, we formalize strategic abstraction as a learning process: a
dynamic refinement of co-player equivalence classes over time. As the agent collects more data and improves
its representations through objectives like IC filtering, contrastive learning (CPC), successor feature rea-
soning (SFR), and model-aware abstraction (MASR), it resolves uncertainty about which distinctions are
strategically meaningful.

We quantify this progression using a metric of strategic ambiguity reduction , which tracks how
entropy over co-player policy clusters decreases as learning unfolds. The trajectory of this refinement illus-
trates how coordination capabilities improve—not by modeling co-policies in full detail, but by compressing
them into increasingly precise, decision-relevant abstractions. This lens frames strategic learning as a
principled process of uncertainty elimination, aligned with the agent’s capacity to coordinate
robustly in complex, uncertain environments.

Definition 12 (Strategic Ambiguity Reduction with Filtering and Refinement). Let Π−i denote the space
of all co-player policies and let Pintent ⊆ Π−i be the subset of co-policies that exceed an intentional influence
threshold:

Pintent := {π−i ∈ Π−i | I(ai;π−i) ≥ θintent} .

© 2024 Sandy Tanwisuth. All Rights Reserved. Please contact for licensing, collaboration, or derivative use.



9 STRATEGIC REFINEMENT AS LEARNING DYNAMICS

Let E0 be the initial coarse clustering over Pintent, and let Et be the learned SEC partition at time t based
on a representation ht trained with CPC, SFR, and MASR objectives.

We define the total strategic ambiguity reduction over time as:

∆SEC(t) := H[Pintent | E0]−H[Pintent | Et],

where H[· | Et] denotes the conditional entropy of the co-policy distribution under the current clustering.
The refinement trajectory then becomes a composition of stages:

Π−i
IC−→ Pintent

CPC+SFR−−−−−−−→ Et
MASR−−−−→ Et+∆,

reflecting progressive resolution of ambiguity from intent clarity to behavioral impact to structural dynamics.

Explanation and Intuition. This definition formalizes strategic learning as a process of progressive
uncertainty reduction. The agent begins with a large, undifferentiated space of co-player policies Π−i,
which may include both ambiguous and uninformative behaviors. The first filtering stage uses Intentional
Information Equivalence (IC) to retain only policies that exert clear, unambiguous influence on the ego
agent—those with high mutual information between co-policy and ego response. This filtered subset, Pintent,
defines the starting point for abstraction.

The learning dynamics then refine the agent’s beliefs over time by applying contrastive and representation
learning objectives. At each stage, the ego agent improves its ability to distinguish co-policies that matter
strategically: first based on short-term influence (via CPC), then based on long-run feature trajectories (via
SFR), and finally on induced transition structure (via MASR). Each refinement step narrows the agent’s
clustering of co-policies—reducing entropy over the space of strategic types and sharpening the agent’s ability
to respond appropriately.

Example. Consider an Overcooked environment in the Coordination Ring layout. Initially, the agent may
face several co-player policies—some chaotic, some systematic. After IC filtering, it keeps only those whose
movement patterns reliably constrain the ego agent’s choices (e.g., always clockwise vs. always counter-
clockwise). Early CPC learning might cluster these based on how they influence the ego’s next action—e.g.,
“wait” vs. “grab pot.” Later, SFR reveals that some of these partners consistently lead to burned dishes
due to delayed delivery, even if they seem aligned in the short term. MASR disambiguates partners who
induce the same outcomes but do so via different paths—e.g., by blocking choke points or delaying the ego
agent’s movement options. Through each stage, the ego agent’s understanding becomes more fine-grained
and actionable.

Connection to Trust. This refinement process operationalizes a notion of trust grounded in consistency
across abstraction layers. When a co-player consistently reduces strategic ambiguity—i.e., when its influence
is clear, behaviorally predictable, aligned in outcomes, and structurally stable—the agent has reason to trust
it. That trust is not binary, but emerges as the cumulative result of abstraction layers aligning. Conversely,
if a policy passes IC but diverges later in SFR or MASR, the agent should remain cautious, recognize
uncertainty, or request further evidence. In this way, ∆SEC(t) provides a learnable, measurable proxy for
the refinement of trust over time, driven by data and grounded in strategic consequence.

Remark 7 (Strategic Clarity Redefines Cooperation and Coordination). Traditional notions of cooperation
often rely on outcome-based judgments—e.g., did the agent help achieve a common goal? In contrast, our
framework redefines coordination in terms of strategic clarity: whether a co-player’s behavior reliably informs
the ego agent about what it should do. From this perspective, cooperation is not about being helpful—it is
about giving legible signal and strategically stable.

This leads to a surprising but useful insight: agents that always defect can be highly valuable for coordi-
nation. Their behavior, though uncooperative in outcome terms, is maximally predictable. The ego agent can
adapt quickly and confidently when paired with such agents. In contrast, co-players who sometimes cooperate
and sometimes defect—without a stable signal or contextual rationale—introduce ambiguity, miscoordination,
and learning instability.
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Example (Overcooked). Consider two co-players: one always blocks the pot and never helps serve
dishes, and another appears cooperative at first but unpredictably switches between assisting and sabotaging.
The always-defecting agent, though adversarial, is easier to adapt to: the ego agent can route around it or
lower its expectations. The unpredictable agent introduces behavioral noise, making trust and coordination
harder. Under our framework, the first agent may score high on IC and MASR (consistent influence and
model structure), while the second scores low—despite being occasionally helpful.

This redefinition allows us to separate alignment in outcomes from alignment in influence. Agents that
behave with intent—even if their goals diverge from ours—can still support stable, interpretable coordination.
This is especially important in multi-agent safety, where strategic clarity can be more valuable than goodwill.

Self-Alignment through Strategic Consistency. While this framework defines abstraction layers for
modeling others, it also supports introspective reasoning. Each level—intent clarity (IC), short-term incen-
tives (CPC), long-term outcomes (SFR), and world modeling (MASR)—can be applied not just to co-player
policies, but to the agent’s own behavior. This allows an agent to reflect: Are my actions consistent with my
inferred intentions? Do I reliably influence the world in ways that match my stated goals or internal beliefs?
When these layers align internally, the agent can be said to be strategically self-aligned. When they diverge,
this inconsistency becomes a signal—either of misgeneralization, emergent conflict, or miscommunication.
Our framework thus provides a computational lens on self-awareness, enabling agents to verify whether they
themselves are trustworthy according to the very standards they apply to others.

10 Intrinsic Motivation through Strategic Refinement
Traditional approaches to intrinsic motivation focus on driving exploration through novelty, prediction error,
or information gain—guiding agents toward unfamiliar states in the hope of discovering value. While effective
in single-agent environments, these approaches can fall short in multi-agent settings where what matters is
not just state novelty, but the strategic influence of others. In such cases, the key question is not “What is
new?” but “What is informative about how others affect my behavior?”

Our framework reframes intrinsic motivation as a process of strategic refinement : the structured re-
duction of uncertainty about co-player influence over time. Rather than seeking novelty for its own sake,
agents are motivated to minimize ambiguity across a hierarchy of abstraction layers—Intentional Informa-
tion Equivalence (IIE), soft best responses (CPC), long-term successor features (SFR), and induced world
dynamics (MASR). This process is quantified by the strategic ambiguity reduction metric ∆SEC(t), which
tracks entropy decay over equivalence classes of co-policies. The larger the reduction, the more the agent
has learned about the strategic roles of its partners.

This refinement process serves as a powerful form of intrinsic motivation:

• At the IIE layer, agents seek partners who provide maximally legible behavioral influence—those
who consistently steer the ego agent’s action distribution. This aligns with mutual information-based
curiosity, but grounded in influence rather than state novelty.

• At the CPC and SFR layers, agents are intrinsically motivated to cluster policies by how they alter
short-term incentives and long-run outcomes. Strategic divergence between clusters creates contrastive
learning signals that reward epistemic progress.

• At the MASR layer, refinement corresponds to understanding how others alter the ego agent’s
transition dynamics. This introduces a model-based analogue of empowerment: the more predictable
and stable your environment is under a partner’s influence, the more strategic control you have over
your own planning horizon.

Importantly, this form of intrinsic motivation is interaction-centered rather than self-centered. It does
not seek control in isolation, but understanding through relation—driving agents to explore and refine their
models of others not just to improve prediction, but to enable robust, zero-shot coordination.
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Example. Consider an agent in Cleanup faced with several co-player policies. A partner who always
takes apples is uncooperative, but clear. Another partner who hesitates near the river sends ambiguous
signals—does this mean they will clean, or defect later? Strategic refinement drives the ego agent to engage
further with the ambiguous policy, seeking more interaction data to resolve its SEC assignment. This
curiosity is not about novelty, but about the need to converge on a minimal, decision-relevant abstraction of
the partner’s role.

In this way, strategic abstraction naturally induces a form of intrinsic motivation aligned with coordina-
tion: the drive to reduce ambiguity over how others influence one’s own policy. This motivates exploration
of behavior space in a way that supports safety, trust, and long-term generalization.

11 Open-Endedness through Strategic Abstraction
Open-ended systems are defined by their ability to produce artifacts that are both novel and learnable
to an observer Hughes et al., 2024. In our case, these artifacts are strategic representations—compressed
abstractions of co-player behavior that evolve over time. From the observer’s perspective (the ego agent), a co-
player policy is open-ended if each new observation contributes to the refinement of the strategic abstraction
space: either by revealing new best-response distinctions, clarifying long-run outcomes, or shifting the model
of environmental dynamics.

Our framework satisfies both dimensions of open-endedness:

• Novelty. As the ego agent interacts with new co-policies, it encounters behaviors that are initially
unpredictable under its current clustering. These surprises drive partition refinement—e.g., splitting
previously indistinguishable classes when CPC, SFR, or MASR layers diverge.

• Learnability. Over time, longer interaction histories enable more accurate representation learning. As
t → ∞, the learned abstraction ht compresses the behavior space more effectively, reducing uncertainty
and enabling faster alignment and generalization.

The abstraction refinement metric ∆SEC(t) (defined in Section ??) naturally corresponds to a measure
of information gain. Each refinement step produces an artifact (e.g., a finer-grained SEC partition) that is
both novel—because it surprises the current model—and learnable—because it results in a stable, predictive
refinement.

State Marginal Matching As part of the next phase, we plan to incorporate the State Marginal Matching
(SMM) Lee et al., 2019 objective into the strategic abstraction framework. SMM provides a mathemati-
cally grounded and behaviorally meaningful way to drive exploration, not merely through novelty, but via
principled distribution matching over strategically relevant state marginals. This aligns naturally with the
goal of abstraction learning: rather than training agents to explore arbitrarily, SMM can help them match
the distribution of interactional roles or strategic niches, forming a tractable outer loop to scaffold strategic
refinement. Our goal is to adapt SMM as a meta-exploration signal that encourages the discovery of co-
player abstractions that are maximally informative yet compressible—potentially guiding the system toward
convergent abstraction layers (IC, CPC, SFR, MASR) in a more self-supervised and open-ended fashion.

Strategic Open-Endedness. This view positions strategic abstraction not just as a tool for coordination,
but as a driver of open-ended interaction. The ego agent learns to distinguish more nuanced behavioral types,
respond more precisely, and align more reliably—not by scaling data or parameters, but by progressively
internalizing the structure of others’ influence.

This reframing also connects to safety: if the agent observes that multiple abstraction layers (e.g., IIE and
MASR) disagree, it halts or defers. If they align and converge, the agent gains epistemic confidence. In this
way, abstraction agreement becomes an actionable indicator of open-ended but safe generalization—moving
toward ASI not by expanding capability space, but by deepening relational understanding.
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