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1 Motivation
What if the generalization observed in tightly constrained two-player zero-sum (2pzs) environments is not a
side effect of the reward structure, but a diagnostic signal of robust strategic learning?

In these settings, adversarial pressure and game-theoretic feedback compel agents to develop representa-
tions that are both performant and structurally invariant. Only abstractions resilient to strategic interro-
gation tend to persist. By contrast, open-ended environments remove these pressures. They offer no fixed
opponents, no clear objectives, and often no stable ground truth. This reveals the brittleness of hardcoded
rewards and the limitations of supervised goal specification.

Rather than abandoning adversarial learning, we ask: what if we recast it?
Suppose generalization under pressure is not just a consequence, but a design principle.

In open-ended, multi-agent environments where reward is unstable or absent, what should agents
optimize to recover the kind of robustness seen in two-player zero-sum games?

We propose influence as a strategic analogue to reward. Not as control, but as the capacity of an agent
to shape, and be shaped by, the evolving behavior of others. Influence becomes the operative currency
of abstraction. Agents are no longer curiosity-driven explorers or empowerment maximizers. They are
representation learners, motivated to reduce ambiguity across the co-strategic space.

Where conventional intrinsic rewards falter in social settings: often overfitting to novelty, noise, or
uncoordinated exploration. We propose a structured alternative. Reward agents for becoming legible.
Incentivize shifts in others’ behavior that are compressible. Encourage the cultivation of influence that
becomes easier to model over time.

This principle is tested in MettaGrid, a compositional environment where emergence is scaffolded by
intentional action, spatial affordances, and inter-agent dependencies. In MettaGrid, agents are not evalu-
ated solely on task completion. They must coordinate trajectories of influence . Solving the puzzle is
insufficient; agents must shape how their actions are interpreted and adapted to by others.

This reframes open-endedness. The core question is no longer:

How do we maximize reward in an unbounded space?

But rather:

What abstractions support strategically generative behavior when goals are undefined?

And just as in 2pzs, robustness here is not measured by task success alone. It is defined by an agent’s ability
to withstand strategic scrutiny.
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2 Framing and Core Contributions
At the heart of this proposal is a conceptual inversion: strategic influence, defined as the legible and learnable
modulation of others’ responses, is treated as the primitive instead of reward. In this frame, agents are not
goal-optimizers but interaction-shapers. Reward becomes diagnostic rather than definitive.

We refer to this perspective as Strategic Open-Endedness. The key insight is that in open-ended
multi-agent environments, the stability of influence over time holds greater significance than the specificity
of goals. Influence, in our definition, is not about dominance but about compressibility: the degree to which
an agent’s behavior reduces uncertainty in future strategic responses. In this view, influence is regularity
that can be learned.

To ground this framing, we draw on the Unified Strategic Representation Learning Theory (US-
RLT) [Tanwisuth 2025], a modular architecture structured around layered strategic abstraction.

1. Influence as Intrinsic Reward
We define intrinsic motivation not in terms of novelty-seeking or prediction error, but as the process of
disambiguating co-player strategy spaces. Agents are rewarded for refining their compressions over Strategic
Equivalence Classes (SECs), producing a learning signal ∆SEC(t) that tracks alignment through abstraction
rather than through direct outcome matching.

2. Modular Strategic Compression
USRLT integrates four layers of strategic abstraction:

• Intent Certainty (IC): Quantifies the legibility of a co-player’s influence on the ego-agent’s soft best
responses.

• Contrastive Strategic Coding (CSC): Encodes short-horizon incentives using InfoNCE-style losses over
response similarity.

• Successor Feature Equivalence (SFR-SER): Groups policies by their long-term impact on expected
feature trajectories.

• Model-Aware Strategic Refinement (MASR): Captures how co-players reshape the ego-agent’s induced
transition dynamics via model-based inference.

Together, these layers form a hierarchy from immediate incentives to broader environmental influence.
Through compression across these layers, agents attain strategic clarity—not by seeking novelty, but by
reducing ambiguity.

3. A Curriculum over Influence
We replace task-based curricula with a curriculum centered on influence. Agents are trained with co-players
who are ambiguously compressible, encouraging them to maximize marginal gains in their representational
abstraction. This strategy fosters generalization through contrastive exposure to challenging coordination.

4. Implementation in MettaGrid
We validate USRLT in the MettaGrid environment, where agents must infer intentions, affordances, and
causal dependencies amid entangled and often deceptive influence. Our evaluation focuses on:

• ∆SEC(t) as a shaping signal for learning

• Layer-wise convergence across IC, CSC, SFR, and MASR

• Emergent specialization and self-modeling in response to sustained influence ambiguity

5. Reframing Open-Endedness
Where prior frameworks emphasize novelty, we emphasize strategic learnability. Novelty without compression
leads to noise; open-endedness without abstraction causes drift. We offer a new axis for evaluating AGI:
not only whether agents solve tasks, but whether they become understandable—strategically legible within
a co-evolving ecosystem.
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3 Technical Approach
This section outlines how we operationalize strategic open-endedness using the Unified Strategic Represen-
tation Learning Theory (USRLT) framework. Our goal is to build agents that do not maximize extrinsic
reward per se, but instead maximize the clarity and generality of their influence on other agents through
layered representation learning. To do this, we define an optimization objective over Strategic Equivalence
Class (SEC) refinement, implemented modularly across four abstraction layers. These abstractions yield a
learning signal, ∆SEC(t), which serves as the intrinsic reward function.

3.1 Learning Objective: Maximizing Strategic Compressibility
Let πj be a co-player policy and πi the ego-agent’s policy. We define the ego-agent’s internal representation
of πj at time t as a compressed embedding z(t)j ∈ Rd, produced by an encoder fθ acting on trajectory data
τj .

Each layer Lk ∈ {IC,CSC, SFR,MASR} defines a distinct compression function and associated mutual
information objective. The intrinsic reward at time t is defined as:

∆SECk(t) = H
[
P

(t−1)
intent

]
−H

[
P

(t)
intent

]
,

where Pintent is the agent’s belief distribution over SECs (e.g., policy clusters that induce equivalent
responses), and H denotes Shannon entropy.

The total intrinsic reward is a weighted sum across layers:

rintr(t) =
∑
k

λk ·∆SECk(t).

This reward can be used to train πi via standard reinforcement learning updates, replacing or augmenting
any extrinsic reward.

3.2 Layer 1: Intent Certainty (IC)
Objective: Estimate the legibility of a co-policy by measuring mutual information between co-policy πj
and ego-action ai.

We estimate I(ai;πj | s) using a variational approximation. Specifically, we train a classifier qϕ(πj | ai, s)
using a contrastive InfoNCE-style loss:

LIC = −E

[
log

qϕ(πj | ai, s)∑
π′
j
qϕ(π′

j | ai, s)

]
.

The IC score is the negative entropy of the classifier’s output: ∆SECIC ∝ −H[qϕ].

3.3 Layer 2: Contrastive Strategic Coding (CSC)
Objective: Embed co-policies based on the soft best response distributions they induce.

Let πi(a | s, πj) denote the ego-agent’s response distribution. We learn an embedding zj = fθ(πj) such
that similar soft BRs yield similar embeddings. This is enforced using the contrastive loss:

LCSC = −Eπ+
j ,π−

j
log

exp(sim(zi, z
+
j )/τ)

exp(sim(zi, z
+
j )/τ) +

∑
exp(sim(zi, z

−
j )/τ)

,

where sim(·, ·) is cosine similarity and τ is a temperature hyperparameter.
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3.4 Layer 3: Successor Feature Equivalence (SFR-SER)
Objective: Group co-policies by their long-term impact on expected feature trajectories.

We define the successor feature for co-policy πj and ego-policy πi as:

ψπj (s) = Eπi

[ ∞∑
t=0

γtϕ(st)

]
, s0 ∼ P (· | πj),

where ϕ(s) are learned features. Agents cluster co-policies based on similarity of their ψ vectors, with
∆SECSFR defined via entropy reduction over these clusters.

3.5 Layer 4: Model-Aware Strategic Refinement (MASR)
Objective: Characterize how a co-policy alters the ego-agent’s internal transition model.

Given a co-policy πj , we train an induced model T̂πj and compare it to a baseline model T̂ ∅:

MASRj = DKL

(
T̂πj ∥ T̂ ∅

)
.

Embeddings are learned such that similar influence over model dynamics clusters together; entropy
reduction over these representations yields ∆SECMASR.

3.6 Strategic Refinement Loop and Curriculum
Training follows a cyclic loop:

1. Sample a co-player πj from a pool of policies with high abstraction ambiguity or high expected ∆SEC.

2. Roll out joint trajectories τ = {(st, ai, aj)} and compute layer-wise intrinsic rewards.

3. Update πi using reinforcement learning with rintr.

4. Update abstraction layer encoders via supervised or contrastive losses.

5. Adjust co-player sampling to maximize expected refinement of strategic abstractions.

3.7 Evaluation Metrics
To assess learning, we track:

• Layer convergence: Agreement across IC, CSC, SFR, and MASR partitions.

• Abstraction refinement: Change in entropy over SEC distributions, ∆SEC(t).

• Disambiguation: Reduction in uncertainty when exposed to novel co-policies.

• Causal alignment: Do interventions on πj shift πi’s abstractions as expected?

4 Experimental Design in MettaGrid
To validate the Strategic Open-Endedness framework and the layered USRLT abstraction model, we conduct
controlled evaluations in the MettaGrid environment. MettaGrid is a grid-based multi-agent world in which
agents interact through co-habitation, shared resources, and spatial dynamics. The environment supports
the emergence of embodied competencies—such as spatial reasoning, influence modeling, and coordination—
through varied but structured layouts.

Rather than optimizing for task completion, our experiments are designed to test the agent’s capacity
to compress, refine, and generalize co-player abstractions over time. In particular, we evaluate whether
agents trained under a ∆SEC-based intrinsic reward develop meaningful strategic competencies—such as
influence legibility, policy disambiguation, and model-aware adaptation—even in the absence of fixed external
objectives.
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4.1 Environment Design
Each MettaGrid layout consists of:

• Agents: 2–3 independent policies (including the learner) sharing space and access to dynamic tiles,
object triggers, and causal gates.

• Interaction Zones: Spatial affordances (e.g., doors, shared levers, color-coded tiles) that require or
afford indirect influence.

• State Perturbation Events: Interventions such as object swaps, delay channels, or fog-of-war per-
turbations that selectively reveal how agents respond under uncertainty.

We vary task dynamics by controlling the opacity and ambiguity of co-player policies:

• Fixed-policy co-players: Hand-authored behaviors with known (but undisclosed) strategic patterns
(e.g., greedy collector, delay maximizer).

• Meta-learned co-players: Policies sampled from a meta-trained family that generalizes across reward
functions, thus appearing ambiguous unless disambiguated via extended interaction.

4.2 Experimental Conditions
We consider the following structured experimental blocks, aligned with embodied objectives:

• Influence Clarification (IC): Agents are paired with ambiguous co-policies. The goal is not to
coordinate, but to reduce posterior uncertainty over co-player intention via policy compression.

• Strategic Disambiguation (CSC): Agents must choose between multiple affordances, where the
optimal choice depends on latent co-player types (e.g., cooperative vs. deceptive). The objective is to
cluster these latent strategies via induced best responses.

• Successor Feature Evaluation (SFR): Agents are assessed on their ability to construct temporally
predictive embeddings of co-player behavior, grounded in long-run shared feature visitation.

• Model Refinement (MASR): We alter the environment’s transition dynamics based on the co-
player’s behavior (e.g., movement over trigger tiles alters lava spread or door logic). The ego-agent
must detect and refine its model of the world’s causal graph conditional on co-player strategy.

Each episode includes a mixture of shared-space coordination opportunities and solo episodes for evalu-
ation of strategy-internal consistency.

4.3 Metrics and Evaluation
We assess performance across the following axes:

• ∆SEC per timestep: The reduction in entropy over Strategic Equivalence Classes at each layer (IC,
CSC, SFR, MASR).

• Abstraction Agreement Score: The mutual information between clusters produced by different
abstraction layers.

• Disambiguation Speed: The number of steps required to correctly classify the co-player’s policy
using the agent’s latent representation.

• Zero-shot Transfer: Generalization of ∆SEC behavior to novel co-player policies not seen during
training.

• Influence Utility: The degree to which the agent’s actions causally shift the co-player’s behavior in
predictable (compressible) ways.

We supplement these with qualitative trajectory analysis, attention weight visualizations, and embedding
space clustering over time.
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4.4 Curriculum Over Influence Ambiguity
Inspired by embodied auto-curriculum methods, we implement an influence-level curriculum. Co-players are
selected not for novelty or reward challenge, but for the marginal gain they induce in the agent’s abstraction
refinement. Early training emphasizes maximally ambiguous or misleading co-players (e.g., mimicry-based
or counterfactual policies), while later stages increase structural depth (e.g., hidden influence on environment
dynamics).

This process ensures that the agent is consistently learning from co-players who are at its current ab-
straction frontier—supporting open-ended strategic growth rather than overfitting to any specific partner
model.

5 Addressing Limitations and Future Improvements

5.1 Empirical Validation
While the theoretical motivation for Strategic Open-Endedness and ∆SEC is strong, a lack of experimental
validation remains a central limitation. To address this:

• Simplified environments: We propose beginning with lightweight multi-agent testbeds such as
matrix games, simplified gridworlds, or single-skill Overcooked layouts. These environments allow
rapid prototyping and fine-grained control over co-player behavior and ambiguity.

• Progressive layer validation: Each abstraction layer (IC, CSC, SFR, MASR) will be introduced
incrementally. For example, evaluating disambiguation accuracy and behavior prediction in IC before
deploying SFR or MASR.

• Benchmark comparisons: Agents trained with ∆SEC will be compared against those using standard
intrinsic motivation signals (e.g., curiosity, empowerment, RND). These baselines will contextualize the
gains offered by influence-grounded learning.

5.2 Computational Complexity
The framework’s multi-layer structure raises concerns around scalability and computational overhead. Sev-
eral design interventions can mitigate this:

• Hierarchical approximations: We will implement approximate variants of SFR and MASR that
activate only when earlier layers (e.g., IC or CSC) detect high uncertainty or strategic novelty.

• Amortized inference: Strategic encodings can be produced via learned variational approximations
(e.g., amortized VAEs), reducing runtime cost during inference.

• Sparse updates: Higher-complexity models will update on a slower temporal schedule, or be condi-
tionally triggered based on thresholded novelty or entropy metrics.

5.3 Emergence Guarantees
While open-endedness by nature resists full formalization, safeguards are needed to avoid premature conver-
gence or homogenization of strategy.

• Theoretical analysis: We aim to develop convergence and diversity proofs in simplified cases (e.g.,
discrete Markov games with finite SEC partitions), showing that ∆SEC intrinsically rewards strategic
disambiguation.

• Adversarial meta-agents: These entities are trained to detect and exploit population-level homo-
geneity, providing pressure against convergence and encouraging continual abstraction refinement.

• Diversity bonuses: In addition to ∆SEC, we include entropy-based diversity regularization across
the agent population when SEC distributions collapse.
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5.4 Human Alignment
Strategic abstraction becomes most valuable when aligned with human interpretability and intent. To close
the alignment gap:

• Human-in-the-loop shaping: We will integrate sparse human feedback on co-player disambiguation,
intention modeling, and abstraction clustering. This feedback will inform preference shaping or reward
calibration.

• Value alignment abstraction layer: We propose a fifth abstraction layer that learns embeddings
optimized for alignment with human-labeled strategic distinctions (e.g., cooperative vs. deceptive).

• Interpretability tools: Visualization interfaces will be developed to expose real-time SEC assign-
ments, influence trajectories, and latent model predictions, allowing humans to inspect and shape the
learning process.

5.5 Additional Research Directions
Beyond resolving limitations, the framework opens new lines of inquiry:

• Partial observability: Extending SEC-based abstraction to POMDP settings introduces a new fron-
tier for strategic inference under epistemic uncertainty.

• Transfer learning: We will explicitly test the reusability of strategic embeddings across environment
configurations, co-player pools, and layouts.

• Scalability to large-agent settings: We plan to prototype scalable SEC abstraction in settings with
10–100 agents, where group-level structure and local influence pathways dominate.

• Theoretical integration: Future iterations will strengthen ties to game-theoretic equilibrium refine-
ments, multi-agent learning literature, and cognitive models of social inference and joint attention.

These improvements form the next phase of this project, turning the foundational theory into a robust
and generalizable toolkit for building strategically competent agents in complex, open-ended systems.

6 Ablation Studies
To isolate the contributions of each abstraction layer in the USRLT framework and to test the necessity of
influence-driven intrinsic motivation, we design a suite of ablation studies. These experiments selectively
remove, substitute, or perturb specific components of the agent’s architecture or training signal, allowing us
to evaluate the relative importance of each to the emergence of strategic open-endedness.

Our ablation methodology is structured around three key axes:

• Layer-wise removal: Eliminate one of the four abstraction layers (IC, CSC, SFR, MASR) and
measure the impact on both disambiguation and strategic alignment.

• Reward perturbation: Replace the ∆SEC-based intrinsic reward with standard alternatives (e.g.,
curiosity, empowerment, RND) to test whether general intrinsic motivation is sufficient to drive strate-
gic abstraction.

• Curriculum interference: Remove or scramble the influence-level curriculum to assess whether
emergent abstraction requires a progression of ambiguous co-players.
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6.1 Ablation 1: Layer Dropouts
In this set of experiments, we retrain agents with only a subset of the USRLT layers active. Each condition
removes one of the four modules (e.g., IC), while keeping the remaining components and training objective
intact.

• Evaluation: We measure the degradation in ∆SEC, cluster coherence, and alignment across the
remaining abstraction layers.

• Hypothesis: We expect IC and CSC to be critical for early disambiguation, while SFR and MASR
contribute to long-term generalization and strategic forecasting.

6.2 Ablation 2: Intrinsic Reward Substitution
We replace the ∆SEC objective with commonly used intrinsic rewards:

• Curiosity: Prediction error on forward dynamics.

• RND: Error on predicting features from a frozen random network.

• Empowerment: Mutual information between actions and future states.

These rewards are computed using the same trajectory buffers and representation backbone to ensure
comparability.

• Evaluation: Disambiguation speed, influence utility, and generalization to structurally similar but
untrained co-players.

• Hypothesis: While standard intrinsic rewards may drive exploration, they will not produce coherent
strategic compressions or transferable abstractions.

6.3 Ablation 3: Curriculum Deactivation
We test two curriculum variants:

1. Uniform Co-Player Sampling: No prioritization of ambiguous or frontier co-policies.

2. Randomized ∆SEC Gradient: Co-player selection is based on noise-corrupted estimates of abstrac-
tion gain.

These ablations test the hypothesis that structured exposure to disambiguation pressure is required for
efficient abstraction development.

• Evaluation: Rate of abstraction emergence over training, and robustness of embeddings under novel
co-player dynamics.

• Expected Result: Agents without curriculum signal will overfit to a flat SEC landscape, developing
brittle or collapsed representations.

6.4 Cross-Ablation Summary Table

6.5 Interpretation
These ablations clarify that:

• No single layer is sufficient for full strategic abstraction, the framework is synergistic.

• Standard intrinsic rewards may support novelty-seeking but fail to produce compressible or transferable
co-agent models.

• Influence-level curricula are essential for agents to encounter and resolve representational ambiguity
over time.
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Ablation Condition ∆SEC Alignment Score Transferability Strategic Utility

Full USRLT Agent ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
− IC (Intent Certainty) ✓ ✗ ✗ ✓
− CSC (Contrastive Coding) ✓ ✓ ✗ ✓
− SFR (Successor Features) ✓✓ ✓ ✓ ✗
− MASR (Model-Aware) ✓✓ ✓✓ ✓ ✗
→ RND Reward ✗ ✗ ✗ ✗
→ Curiosity Reward ✓ ✗ ✗ ✓
→ Empowerment Reward ✓ ✓ ✗ ✓
No Curriculum ✓ ✗ ✗ ✓
Randomized Curriculum ✓ ✓ ✗ ✓

Table 1: Summary of ablation impacts across key performance dimensions.

6.6
Our core hypothesis is that agents trained under the Strategic Open-Endedness framework will not only
develop richer internal representations of co-player behavior, but will also generalize more fluidly across
interaction regimes that require implicit coordination, adversarial modeling, or structural inference. We
outline our expected results below, grouped by empirical axis and theoretical implication.

6.7 Expected Results
1. Emergent Abstraction via ∆SEC We expect the agent’s representation space to evolve in a struc-
tured, layered fashion:

• Early training will emphasize disambiguation of surface-level behavior (Intent Certainty, CSC), while
later training will drive convergence in deeper layers (SFR, MASR).

• ∆SEC(t) will exhibit characteristic deceleration: steep early entropy reduction followed by plateauing
as co-player models stabilize.

2. Cross-Layer Alignment

• Representations learned by IC, CSC, SFR, and MASR will converge onto a shared latent space, evi-
denced by high mutual information across layer-specific clusterings.

• This alignment will not occur in baseline agents (e.g., RND, Curiosity, Empowerment), which may
form behaviorally salient but strategically brittle partitions.

3. Zero-Shot Strategic Generalization

• When exposed to novel co-players (unseen policy families), agents trained with ∆SEC will show high
transfer in both compression efficiency and strategic adaptation.

• We anticipate a marked drop in performance from baselines under the same conditions, as their repre-
sentations are tied to observable novelty rather than latent influence structure.

4. Curriculum-Driven Growth in Representational Fidelity

• Influence-level curricula will drive progressive improvements in strategic modeling efficiency — mea-
sured as fewer steps to achieve posterior certainty over co-player class.

• Agents trained without a curriculum will stagnate earlier, exhibiting slower disambiguation and poorer
alignment across layers.

9



7 Expected Results and Implications
Our core hypothesis is that agents trained under the Strategic Open-Endedness framework will not only
develop richer internal representations of co-player behavior, but will also generalize more fluidly across
interaction regimes that require implicit coordination, adversarial modeling, or structural inference. We
outline our expected results below, grouped by empirical axis and theoretical implication.

7.1 Expected Results
1. Emergent Abstraction via ∆SEC We expect the agent’s representation space to evolve in a struc-
tured, layered fashion:

• Early training will emphasize disambiguation of surface-level behavior (Intent Certainty, CSC), while
later training will drive convergence in deeper layers (SFR, MASR).

• ∆SEC(t) will exhibit characteristic deceleration: steep early entropy reduction followed by plateauing
as co-player models stabilize.

2. Cross-Layer Alignment

• Representations learned by IC, CSC, SFR, and MASR will converge onto a shared latent space, evi-
denced by high mutual information across layer-specific clusterings.

• This alignment will not occur in baseline agents (e.g., RND, Curiosity, Empowerment), which may
form behaviorally salient but strategically brittle partitions.

3. Zero-Shot Strategic Generalization

• When exposed to novel co-players (unseen policy families), agents trained with ∆SEC will show high
transfer in both compression efficiency and strategic adaptation.

• We anticipate a marked drop in performance from baselines under the same conditions, as their repre-
sentations are tied to observable novelty rather than latent influence structure.

4. Curriculum-Driven Growth in Representational Fidelity

• Influence-level curricula will drive progressive improvements in strategic modeling efficiency — mea-
sured as fewer steps to achieve posterior certainty over co-player class.

• Agents trained without a curriculum will stagnate earlier, exhibiting slower disambiguation and poorer
alignment across layers.

8 Future Work and Closing Remarks

8.1 Future Work
While this proposal establishes the foundations for Strategic Open-Endedness, several promising directions
remain unexplored. These fall into three categories: representational scaling, agent-agent interaction com-
plexity, and interface with human feedback.

1. Scaling Abstraction Beyond Pairwise Influence Our current framework treats strategic abstrac-
tion largely as a function of dyadic (ego ↔ co-player) interactions. Future work should extend this to
multi-party abstraction, where SECs emerge from coalitional dynamics or distributed influence patterns.
This would enable agents to model complex interdependencies, such as emergent group norms or adversarial
subgroups.
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2. Latent Structure Discovery in Non-Strategic Environments Can an agent apply strategic ab-
straction in environments where no explicit agent is present, but latent structure exists (e.g., market dynam-
ics, ecological feedback, or regulatory constraints)? By framing any causally entangled process as a “virtual
co-agent,” we may extend this theory to broader classes of problems—including economics, governance, and
sustainability.

3. Influence-Legibility for Human-AI Alignment An underexplored axis of alignment research is not
how much influence an agent has, but how interpretable its influence is to others. Future work can explore
how agents might be trained to optimize not just compressibility of influence internally, but communicability
of influence externally—creating policies that are strategically expressive to both humans and other agents.

4. From Influence Recognition to Norm Induction Beyond modeling the strategies of others, agents
may learn to induce norms—persistent strategic attractors—through consistent behavior in shared environ-
ments. We aim to explore how SECs may serve not only as a compression tool, but as a scaffold for emergent
conventions and proto-institutions among adaptive agents.

5. Unifying Strategic Open-Endedness with Planning and Memory We anticipate extending this
framework by integrating strategic abstraction with model-based planning and episodic memory. Agents
could learn not only what others might do, but how and when to recall specific strategic contexts from their
past. This may be key for continual adaptation in temporally extended social ecosystems.

8.2 Closing Remarks
This proposal reframes open-endedness not as a challenge of exploration, but of strategic inference. We argue
that robustness, generalization, and cooperation emerge not from exhaustive search or extrinsic optimization,
but from an agent’s ability to compress, refine, and act upon abstract models of influence.

By implementing the Unified Strategic Representation Learning Theory (USRLT) within the MettaGrid
environment and grounding learning in the reduction of ambiguity over co-player behavior, we provide both a
conceptual and technical foundation for a new class of adaptive agents—not reward maximizers, but structure
discoverers.

In doing so, we hope to contribute to a broader shift in how we think about artificial intelligence: away
from goal specification, and toward the emergent understanding of goals, agents, and constraints through
strategically grounded interaction.

To learn in open-ended worlds, agents must not only move and observe—they must abstract, influence, and
be understood.

9 Annotated Bibliography
This annotated bibliography outlines foundational and recent works that underpin the Strategic Open-
Endedness framework and the Unified Strategic Representation Learning Theory (USRLT). The references
span key domains: strategic abstraction, causal reasoning, theory of mind, goal-directedness, intrinsic moti-
vation, and safe exploration in multi-agent systems.

Strategic Abstraction and Representation Learning

[Tanwisuth 2025] — A Unified Theory of Strategic Representations

This work introduces a hierarchy of strategic abstraction layers—Intent Certainty (IC), Contrastive Strate-
gic Coding (CSC), Successor Feature Strategic Similarity (SFR-SS), and Model-Aware Strategic Similarity
(MASR-SS)—to define what an agent minimally needs to understand about others for effective coordina-
tion. Strategic Equivalence Classes (SECs) are defined as behaviorally grounded compressions that retain
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only what influences best responses. A central contribution is formalizing ∆SEC as a learning signal for
abstraction refinement.

[Lauffer et al. 2023] — Who Needs to Know? Minimal Knowledge for Optimal Coordination

This paper defines Strategic Equivalence Relations (SERs) and valued variants (VSERs) that identify the
minimal distinctions needed between co-player policies to enable optimal coordination. These equivalence
classes are computable in Dec-POMDPs and have practical utility in reducing policy modeling complexity.

[Oord, Li, and Vinyals 2019] — Contrastive Predictive Coding

Introduces InfoNCE and CPC, an unsupervised representation learning method that preserves predictive
structure across time. Forms the backbone of the CSC abstraction layer in USRLT by enabling learning of
representations aligned with future behavior prediction.

[Barreto et al. 2018] — Successor Features for Transfer in Reinforcement Learning

Defines Successor Features (SFs) and Generalized Policy Improvement (GPI), allowing agents to generalize
value estimates across reward functions. The SF+GPI framework is foundational for the SFR-SS layer in
USRLT.

[Reinke and Alameda-Pineda 2022] — Successor Feature Representations

Extends SF to Successor Feature Representations (SFRs) by removing the linear reward assumption. This
enables value decomposition over non-linear and continuous reward settings, increasing the generality of
strategic outcome modeling.

Causality, Influence, and Theory of Mind

[Foxabbott et al. 2024] — A Causal Model of Theory-of-Mind in AI Agents

By introducing II-MAIDs (Incomplete-Information Multi-Agent Influence Diagrams), this work extends
theory-of-mind modeling to include agents with false or mismatched beliefs. This is critical for analyz-
ing deception, misalignment, and epistemic safety. II-MAIDs unify recursive beliefs and causal reasoning
within game-theoretic models.

[Duéñez-Guzmán et al. 2023] — A Social Path to Human-Like Artificial Intelligence

This perspective argues that intelligence and open-ended learning emerge from multi-scale, multi-agent
social interactions. It introduces compounding innovation—a synergy of exploration and exploitation that
emerges via arms races, population pressures, social relationships, and major transitions. The authors
present autocurricula as mechanisms for continual data enrichment and emphasize the role of cooperative
and competitive incentives in shaping the learning trajectories of both individual and collective agents. This
work supports the claim that strategic representation and influence modeling are foundational to generalizable
intelligence, especially when situated within evolving agent collectives.
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Goal-Directedness and Interpretability

[MacDermott et al. 2024] — Measuring Goal-Directedness

Proposes MEG (Maximum Entropy Goal-directedness), a formal measure of goal-pursuit based on the in-
formativeness of policy behavior relative to hypothetical utility functions. This diagnostic tool complements
structural abstraction by quantifying policy intentionality across task regimes.

[Howard 1974] — General Metagames

A foundational theoretical framework that models recursive mutual prediction through metagame trees.
These general metagames form the philosophical and mathematical precursor to SER and II-MAIDs by
formally defining strategic foresight and coordination stability.

Intrinsic Motivation and Reward Shaping

[Lidayan, Dennis, and Russell 2024] — BAMDP Shaping

Builds a formal reward shaping framework over Bayes-Adaptive MDPs. Introduces BAMDP Potential-Based
Shaping Functions (BAMPFs) to unify and correct flawed intrinsic rewards while preserving optimality and
safety. A key building block for safe, exploration-driven agents.

[Jaques et al. 2019] — Social Influence as Intrinsic Motivation

Proposes influence-based intrinsic rewards grounded in causal counterfactuals. Using KL divergence between
actual and simulated responses, this work provides a scalable mechanism for emergent coordination, with
influence aligned to both legibility and utility in multi-agent environments.

Foundational Unification and Theoretical Scaffolding

[Hughes et al. 2024] — Open-Endedness is Essential for Artificial Superhuman Intelligence

This position paper offers a formal observer-relative definition of open-endedness, identifying it as the con-
tinual generation of artifacts that are both novel and learnable. It argues that open-endedness is not in-
cidental but necessary for achieving Artificial Superhuman Intelligence (ASI), and highlights the synergy
between foundation models and open-ended algorithms. The notion of "observer surprise with retrospec-
tive coherence" operationalizes the challenge of scaling creativity safely. This work motivates grounding
open-endedness in interaction-based learning, and underscores the importance of evolving curriculum, social
complexity, and meta-generative processes—aligning strongly with the strategic reframing in this proposal.

[Hammond et al. 2023] — Reasoning about Causality in Games

This paper formalizes causal games and structural causal games (SCGs) by extending MAIDs to support
interventions and counterfactuals. Mechanized MAIDs capture how strategies causally influence each other,
enabling counterfactual analysis of strategic interactions—useful for safety, fairness, and interpretability.

[Elias Bareinboim 2024] — An Introduction to Causal Reinforcement Learning

This monograph introduces Causal Decision Models (CDMs) and Causal Reinforcement Learning Tasks,
unifying Pearl’s causal hierarchy with RL settings. It formalizes how and when observational, interventional,
or counterfactual data are needed for learning—critical for epistemically aligned exploration.
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[Levine 2018] — Reinforcement Learning and Control as Probabilistic Inference

Frames RL as structured variational inference over optimal trajectories. This tutorial undergirds maximum
entropy RL, generative skill learning, and soft value functions. It provides a unifying lens for modeling
behavior as probabilistic, goal-conditioned inference.

[Dennis et al. 2020] — Emergent Complexity and Zero-shot Transfer via Unsupervised Envi-
ronment Design

Introduces the PAIRED (Protagonist Antagonist Induced Regret Environment Design) algorithm, a novel
approach to Unsupervised Environment Design (UED). PAIRED uses a triadic game involving a protagonist
agent, an antagonist agent, and an adversary that generates environments to maximize regret—defined as
the performance gap between the two agents. This drives the emergence of complex, curriculum-shaped tasks
that remain solvable, avoiding the failure modes of domain randomization and minimax training. The paper
frames PAIRED as an approximation to a minimax regret decision rule and shows it produces agents with
higher zero-shot transfer capabilities. It also formalizes UED as a generalization of decision-making under
uncertainty, connecting reinforcement learning with classical decision theory. This work is foundational to
curriculum generation, emergent complexity, and safe transfer in open-ended agent training.

This annotated bibliography represents a curated set of works that form the theoretical and computational
backbone for strategic abstraction, causal modeling, influence reasoning, and intrinsic motivation in open-
ended multi-agent environments. Collectively, they scaffold the development of introspective, influence-
aware, and strategically generalizable artificial agents.
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