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1 Abstract

Successful navigation in the social world requires an agent to respond to social and environmental uncer-
tainty adaptively. Though neural correlations of reinforcement learning (RL) were found in social strategic
learning, the experimental set-ups are often in matrix games that do not capture the complexity of real-
world social situations. Several questions remain unanswered: how do social uncertainty, environmental
uncertainty, and their interaction affect the rate of change of adaptation in strategic-policy, how do as-
sociated brain networks relay when facing real-world social situations, and how does the brain reduce
state-space information in the social world to compute a strategically-apt actionable value? We propose to
study the behavioral and neural computational mechanisms of value-based strategic decision-making via
online-behavioral and fMRI experiments. In these experiments, human participants will face Sequential So-
cial Dilemmas (SSD) – multi-agent game-theoretical environments – against different types of pre-trained
opponents. We hypothesize that the rate of strategic-policy-adaptation changes as a function of social-
, environmental-reliability, and their interaction where higher social- and environmental-volatility result
in a higher frequency of strategic-policy-adaptation. We assess variations of social- and environmental-
uncertainty in online behavioral SSD tasks including Cleanup, and Harvest : a public-goods game, and a
tragedy-of-the-commons game, respectively. Neurally, we expect the brain to track the reliability of the
predictions within each strategic-policy in vlPFC, TPJ, and RCC. We also expect neural correlates of
state-value in vmPFC, action-value in premotor regions, and mentalizing in mPFC, pSTS, and TPJ. We
test the brain correlates against the family of models in Partially Observable Markov Decision Process
(POMDP). We also investigate how the brain performs a high-dimensionality reduction of the complex so-
cial world into key principal behavioral components such as state-value and action-value of self and others
in regards to the observable environment through representation learning. We hope insights from these
studies can elucidate neuropsychiatric social-function deficits, and inspired research in value alignment.

Keywords: reinforcement learning; social decision making; functional fMRI; intertemporal social dilem-
mas; partially observable Markov Decision Process
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2 Specific Aims

Successful navigation requires an agent to respond to social and environmental uncertainty adaptively
both in Multi-agent Reinforcement Learning (MARL) and human social interactions[19][14][16][26]. Sev-
eral studies found the neural correlations of Reinforcement Learning (RL) algorithms in social strategic
learning[10][33][13], where the experimental set-ups are often in matrix games: set-ups of payoff structure
where two-players have opposing interests[30]. However, social situations are non-solipsistic, spatially-, and
temporally-extended in the real world. Thereby, the neural dynamics in which the human brain represents
the state of the social environment and makes strategic decisions to generate strategically-apt behavioral
policies remain understudied. This proposal aims to investigate the unanswered questions: how do so-
cial uncertainty, environmental uncertainty, and their interaction affect the rate of change of behavioral
adaptation in strategic-policy, how do associated brain networks relay when facing the complexity of the
social world, and how does the brain reduce state-space information in the social world to compute a
strategically-apt actionable value? Insights into these behavioral and neural computational mechanisms
are crucial to understanding factors and interventions affecting behavioral and neuropsychiatric disorders
related to social function deficits. The knowledge gained from these studies can also inform research in
value-alignment[1][24] at the behavioral algorithmic levels and neural-systems representational levels.

This proposal leverages recent developments in game-theoretical MARL, social cognitive neuroscience, and
biologically-inspired artificial intelligence to begin to bridge the fields using quantitative approaches. We
hypothesize that the rate of strategic-policy-adaptation – switching between cooperative and defective pol-
icy – changes as a function of social-, environmental-reliability, and their interaction where higher social-
and environmental-volatility result in less reliability and in a higher rate of strategic-policy-adaptation.
We begin by assessing human behaviors in response to social and environmental uncertainty in online-
tasks against different types of pre-trained agents. After the behavioral experiments, we will test cognitive
neuroscience experiments using functional magnetic resonance imaging (fMRI) when human participants
face the same tasks. We utilize model-based fMRI[23] and connectivity analysis to answer the question
regarding the functionality and connectivity of brain regions associated with social functions. We also use
the model-free analysis to assess how the brain performs a high-dimensionality reduction of the complex
social world into key principal behavioral components. The details of these experiments are as follows:

Aim 1: Evaluating the influence of social uncertainty, environmental uncertainty, and their
interaction on the rate of change of adaptation in strategic-policy. Prior works[26][3][7] led us
to hypothesize that higher uncertainty in both social factors i.e. different types of opponents, environ-
ment factors i.e. availability of resources, and their interaction result in a higher rate of strategic-policy-
adaptation. We administer varieties of environmental-uncertainty via Sequential Social Dilemmas (SSD)
tasks while we assess the social uncertainty by having a human participant play the games against dif-
ferent types of opponents such as always-cooperated, always-cheated, random, and stable pre-trained RL
agents. SSD is a series of social dilemmas, situations in which a conflict between personal and collective
benefits is introduced[25][6][20]. Two categories of social dilemmas[17] are a public-goods game (PGG),
and a tragedy-of-the-commons game (TCG). PGG is a game in which an individual is required to pay a
cost to obtain shared resources[9], and TCG is a game in which there is an incentive to diminish the shared
resources for personal gain[12]. We use Cleanup[14][16] and Harvest [19][14][16], which are PGG and TCG
respectively, to evaluate the effects of environmental uncertainty in different incentive structures.

Aim 2: Understanding social function associated brain networks and their relationships. The
brain regions of ventrolateral prefrontal cortex (vlPFC), temporoparietal junction(TPJ), and rostral cin-
gulate cortex (RCC) have been shown to correlate with behavioral-policy control emulating others’ goals in
social learning[3]. Moreover, prior works[22][4][18][29] led us to expect that in social situations, the brain
keeps track of the reliability of the predictions within each strategic-policy in the brain areas mentioned.
Simultaneously, the neural correlations of state-value and action-value can be found in the ventromedial
prefrontal cortex (vmPFC) in premotor regions[5]. We test brain correlates against the family of models in
Partially Observable Markov Decision Process (POMDP) since this family of models has shown successful
attempts in explaining social learning[26][2][8][31][11].

Aim 3: Investigating how the brain represents environment, other adaptive players, and
the information integration mechanisms that produce strategically-apt action-value. Re-
cent studies have shown similarities between biological and artificial neural networks, which can dis-
entangle observational information through nonlinear-transformation into principal behaviorally-relevant
components[5][32][15]. These findings led us to hypothesize that the neural computational framework
of social decision making can be represented in similar manners. Perhaps, the brain needs to represent
and performs a high-dimensionality reduction of the complex social world into key principal behaviorally-
relevant components such as state-value and action-value of self and others in regards to the observable en-
vironment. Following successful accounts in finding signals of representation learning in the brains[21][28],
we plan to utilize Contrastive Unsupervised Representations for Reinforcement Learning (CURL)[27] for
mapping neural correlates of high-dimensionality reduction in social settings.
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