
Literature Review on Classifications of
Multi-Agent Bandits and Multi-Agent

Reinforcement Learning

Parajuli, Samyak
samyak.parajuli@berkeley.edu

Tanwisuth, Sandy
kst@berkeley.edu

May 2021

1 Introduction
This paper gives a broad overview of current literature in Multi-Armed Multi-
Agent Bandit settings (MAMAB) and Multi-Agent Reinforcement Learning
(MARL). There is a history of cross-pollination between the MAMAB and
MARL subfields. Typical literature review in each subfield of multi-agent cover
different aspects of basis composing the algorithms, and several features of
algorithms such as robustness, computation, time; however, current works have
not compare the similarities and differences of MAMAB to MARL. Our work
not only covers the ground of features comparison but also aims to bridge
the theory in bandits with the state-of-the-art practices in deep reinforcement
learning. We also covers classifications of behavioral policies, demonstrating
the similarities and differences in MAMAB and MARL. We hope that our work
initiates meaningful conversations between MAMAB and MARL by put forth
the importance notions MARL can learn from MAMAB and vice versa.

2 Formalism

2.1 General Setting and Objectives
We first express the general setting and objectives of the multi-armed bandit and
reinforcement learning problem in both the single agent and multi agent case.

2.1.1 Bandit Problem

2.1.1.1 Single Agent A single agent multi-armed bandit is defined as [1]:

• a tuple 〈A,F 〉

• A is a set of arms
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• F (a) is a stochastic function providing a reward in the range [0, 1]

The objective is to minimize the expected cumulative regret [2]:

T∑
t=1

µ? − µa(t)

2.1.1.2 Multi Agent In the multi-agent bandit setting, we have [3]:

• tuple 〈D,A, F 〉 Where D is the set of m enumerated agents.

• A is the set of joint arms, which is the Cartesian product of the sets of
actions for each agent i for each of the m agents in D.

• F (a) is a stochastic function providing a global reward when a joint arm
is pulled.

• G = (V, E) is a graph which models the communication network connecting
agents where Each node corresponds to an agent and each edge between a
pair of nodes is a communication path between those agents.

At each time step, each agent selects an arm and receives an independent and
identically distributed reward associated with the selected arm. Between rounds
agents share information with each other in some fashion.

2.1.2 Reinforcement Learning Problem

2.1.2.1 Single-Agent

A Framework for Single-Agent Learning In the single-agent setting,
Markov Decision Process (MDP) is a formal framework describing the interactions
between the agent and its environment. Detail descriptions of the MDP formal
setting are below.

Markov Decision Process (MDP) MDP [4] is a formal framework for
Reinforcement Learning (RL). Consider an MDP: M = 〈S,O,A, T ,R〉, an
agent observes states from the state space S according to their observation
function o ∈ O and select actions from their finite action space A. The state
updates according to the transition function T : S ×A× S → [0, 1] where the
function determines the probability of a transition from any state s ∈ S to
any state s′ ∈ S given any possible action a ∈ A. The agent receives scalar
rewards according to their reward function R : S ×A× S → R. The agent then
attempts to maximize its expected sum of discounted rewards E{

∑∞
t=0 γ

trt}
where γ ∈ [0, 1] is a temporal discount factor that encourages the agent to
discount future rewards and rt is the reward received at timestep t.

2.1.2.2 Multi-Agent
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A Framework for Multi-Agent Learning Recent developments in multi-
agent reinforcement learning focused on sequential decision making in a game
theoretical environment called Sequential Social Dilemma (SSD) [5]. The
ways in which SSD is different from the typical matrix game in game theory space
is that the set-up of SSD (1) considers temporally extended series of actions
rather than by individual decisions, (2) perceives cooperative behaviors as graded
quantity, and (3) assumes that agents must make decisions with only partial
information about other agents in the environment [5, 6]. These characteristics
suggest that partially observable Markov games might be a suitable model for
MARL [4].

Partially observable Markov decision process (POMDP) defines as
M = 〈S,O,A, T ,R〉. The agents observe states from the state space S according
to their observation functionO and select sequence of their actions from the action
space A. The state updates according to the transition function T and agents
receive scalar rewards according to their reward function R. Agents attempt
to maximize their expected sum of discounted rewards E{

∑∞
t=0 γ

trt} where
γ ∈ [0, 1] is a temporal discount factor that encourages agents to discount future
rewards and rt is the reward received at timestep t. Markov games encapsulate
multiple reward functions, allowing different agents to receive different rewards.
Markov games represent agent behavior as policies Π : O → A which maps
observations to individual actions. This allows Markov games to better represent
intermediate stages in their behavioral policies, during which agents may exhibit
confused behavior or behavior that combines multiple strategies.

Markov Game Formulation Partially-observable general-sum Markov
game [4, 5, 7] describes formularizations of MARL. At each timestep, agents take
actions based on their observation of the environment (but not of each others’
internal models), and receive individual rewards based on the population that
they belong to. As reinforcement learners, their goal is to learn by experience a
behavioral policy that minimizes their delay and consequently maximizes their
reward.

SSD ’s has the assumption that agents are “independent” of each other and
model each other implicitly as non-stationarity in the environment [5]. This
simplification reduces the effectiveness of the optimal policy by obscuring relevant
information from the agents’ environment model [6], but is nevertheless commonly
used to prevent infinitely recursive modelling [5].

Formally, works in MARL typically define an N -player partially observable
Markov gameM with a finite state space S [5, 8, 7]. The observation function
O : S → Rd maps states to d-dimensional observations that obscure other agents’
internal states. Each agent has an action space, and represented collectively as the
joint action space A : {A1, . . . , An}. Each joint action {a1, . . . , an} ∈ A advances
the state according to the deterministic transition function T : S×A×S → [0, 1].
Each agent i receives a reward Ri : S ×A → R. Each agent’s reward depends
on the initial state, the joint action and its population.
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3 Classifications of Behavioral Policies
Frameworks for Classifications Survey papers in multi-agent have at-

tempted to classify different behaviors in multi-agent learning [9, 10, 11, 12,
13, 14]. Within those classifications, we can distinguish them into two-main
subcategories as the game-theoretical based and the deep learning based.

Game Theoretical Classifications Shoham et. al. defined the multi-
agent framework into five different agendas including: computational, de-
scriptive, normative, prescriptive cooperative, and prescriptive non-
cooperative [10]; each components described as computing properties of the
game iteratively, investigating formal models of learning that agree with people’s
behavior, focusing on which repeated-game strategies are in equilibrium, decen-
tralizing the control of a system operating in a dynamic environment by focusing
on joint policy and resource allocations, and asking how an agent should act to
obtain high reward in the repeated game individually respectively.

Deep Learning Classifications Stone raised a concern that these cat-
egories are limited since the provided frameworks only consider multi-agent
learning from game theoretical perspectives [12] without taking into considera-
tion of recent developments in deep learning. To address this issue, we adopted
the classifications from a recent up-to-date works [13, 14]. Hernandez-Leal et. al.
adopted the classifications from the insipirations of [9, 11, 12, 15]. They classify
behaviors of the multi-agent learning algorithms into four non-mutually exclusive
sub-categories including emergent behaviors, cooperation and competi-
tions, communication, and inference of other agents. We explain the
details including implications and implementations of these categories in the
following section.

Since MAMAB and MARL algorithms are more closely related to the second
classifications, we adopted Hernandez-Leal et. al. frameworks [13, 14] while
incorporating and comparing both algorithms in MAMAB and MARL that fit
into each individual classification. For the purpose of this work, we will only
highlight the similarities and differences between the algorithms without going
into the implementation details.

3.1 Emergent Behaviors
Emergent behaviors defined as those algorithms that aim to analyze and evaluate
Deep Reinforcement Learning (DRL) algorithms. Since this category deals di-
rectly with deep learning aspect, to our knowledge, there is no existing algorithms
in MAMAB that fit into this category. Nonetheless, recent works developed in
MARL that based off of either Deep Q-learning (DQN) [16], or Proximal Policy
Optimization (PPO) [17] are well-suited in this category.
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3.1.1 Deep Q-learning (DQN)

Deep Q-learning is a neural network architecture based off of the Q-Learning
algorithm [18]. Agents calculates the quality Q of the combinations of state S
and action A in other words, the function Q : S ×A → R maps state and action
in combinations to a scalar reward on real numbers. The Q-learning algorithm
described as follows:

Algorithm 1 Q-learning: Learn function Q : S ×A → R
Require:
States S = {1, . . . , s}
Actions A = {1, . . . , s}, A : S ⇒ A
Reward function R : S ×A → R
Black-box (probabilistic) transition function T : S ×A → S
Learning rate α ∈ [0, 1], typically α = 0.1
Discounting factor γ ∈ [0, 1]
function Q-learning(S, A, R, T , α, γ)

Initialize Q : S ×A → R arbitrarily
while Q is not converged do

Start in state s ∈ S
while s is not terminal do

Calculate π according to Q and policy π(s)← arg maxaQ(s, a)
a← π(s)
r ← R(s, a)
s′ ← T (s, a)
Q(s′, a)← (1− α) ·Q(s, a) + α · (r + γ ·maxa′ Q(s′, a′))
s← s′

return Q

3.1.2 Proximal Policy Optimization (PPO)

Schulman et. al. developed Proximal Policy Optimization based off of Policy
Gradient method [17]. PPO is an on-policy algorithm and can be used for
environments with either discrete or continuous action spaces [19].
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Algorithm 2 PPO
Require:
initial policy parameters θ0
initial value function parameters φ0
function PPO(θ0, φ0)

for for k = 0, 1, 2, . . . do do Collect set of trajectories Dk = {τi} by running
policy πk = π (θk) in the environment. Compute rewards-to-go R̂t. Compute
advantage estimates, Ât (using any method of advantage estimation) based
on the current value function Vφk . Update the policy by maximizing the
PPO-Clip objective:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ (at | st)
πθk (at | st)

Aπθk (st, at) , g (ε, Aπθk (st, at))

)
typically via stochastic gradient ascent with Adam. Fit value function by
regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ (st)− R̂t

)2
,

typically via some gradient descent algorithm.
return Q

3.1.3 Emergent Behaviors in MARL

Works in MARL can be divided into ones which adopted DQN [5, 8, 20, 7] and
the others which adopted PPO [21, 22] as the based-line algorithms. Since these
algorithms originally aim for single-agent performance, MARL then use these
algorithms as baseline for self-play [20, 21]. And through self-play, different
behavavioral policies of agents that seem like cooperations and competitions
emerge. More information on cooperation and competition discussed in section
3.3.2.

3.2 Communications
Communication is the next fundamental aspect of a multi agent problem where
the goal is for agents to maximize their combined utility by means of sharing
information. This can come in any combination of a local or global communication
protocol that is either discrete or continous.

3.2.1 Distributed Bandits

Communication with neighbors improves performance between agents but the
amount of improvement experienced will be based on the structure of the
communication network.
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[23] initially presents the coopUCB1 and coopUCB2 algorithms that use
modified upper confidence decision-making heuristic that captures the effect of
the additional information an agent receives through communication with other
agents as well as the rate of information propagation through the network. The
general expression for upperconfidence methods are:

Qki (t− 1) = µ̂ki (t− 1) + Cki (t− 1)

3.2.1.1 CoopUCB1

Cki (t− 1) = σg

√
2γ

G(η
· n̂

k
i (t− 1) + εkc
Mn̂ki (t− 1)

· ln(t− 1)

n̂ki (t− 1)

3.2.1.2 CoopUCB2

Cki (t− 1) = σg

√
2γ

G(η
· n̂

k
i (t− 1) + f(t− 1)

Mn̂ki (t− 1)
· ln(t− 1)

n̂ki (t− 1)

The difference between these two is that the UCB heuristic for coopUCB2
depends on the total number of agents M , but not the epsilon term which is a
function of the global graph structure.

3.2.1.3 CoopUCL They also derive a Bayesian algorithm coopUCL which
is the distributed version of the single agent UCL algorithm. In this setting we
have:

Qki (t− 1) = ν̂i(t− 1) + σ̂i(t− 1)Φ−1(1− α(t− 1))

Where at each time t, Q, the upper-credible-limit is computed for each arm.
This is an upper bound computed with ν̂ and σ̂ the posterior mean and standard
deviation which holds with probability α(t− 1)

3.2.2 Loose Couplings

These class of multi agent multi armed bandit algorithms focuses on the fact
that the joint action space scales exponentially with the number of agents in the
system.

So instead of considering an agent that decides on the actions of all agents
involved, we can exploit the fact that many coordination tasks have loose
couplings. This means the global reward function can be decomposed into ρ
possibly overlapping noisy, observable and independent local reward functions
over subsets of agents [24] - f =

∑ρ
e=1 f

e

In this loose coupling setting, the communication network is described as
a bipartite graph G = 〈D, {fe}ρe=1, E〉, where the nodes are agents D and
components of the factored reward function, an edge 〈i, fe〉 exists if and only if
agent i influences component fe and µ(a) =

∑ρ
e=1 µ

e(ae) is the mean of a joint
arm.
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Conflicts between overlapping groups may arise since the optimal local arms
for an agent in two groups may differ. Therefore, these methods need to define
the argmax-operator that can deal with the factored representation of a MAMAB,
while still returning the full joint arm that maximizes the sum of samples. They
do this using variable elimination methods which compute the joint arm that
maximizes the global reward without explicitly enumerating over the full joint
arm by sequentially eliminates an agent from the communication graph, while
computing its best response with respect to its neighbours.

3.2.2.1 Multi-Agent Upper Confidence Exploration (MAUCE) MAUCE
executes a joint action at every timestep for a particular factorization to maximize
both the estimated mean reward plus an exploration bonus.

The algorithm improves upon the combinatorial bandit framework [25] where
arms with unknown distributions form super arms. MAUCE achieves a regret
bound that depends on the harmonic mean of the local upper confidence bounds,
rather than their sum.

3.2.2.2 Multi-Agent Thompson Sampling (MATS) At each time step
t, MATS draws a sample µet (ae) from the posterior for each group and local arm
given the history, Ht1, of local actions and rewards associated with past pulls.
MATS samples the local mean rewards according to the beliefs of the user at
each time step, and then uses variable estimation to maximize in order to find
the optimal joint arm.

MATS achieves a regret bound that scales sublinearly with a factor AT ,
where A is the number of local arms.

3.2.3 Communications in MARL

Communications in MARL are usually defined as POMDPs with cooperative
agents. Recent works in this subcategory tend to focus on optimal joint poli-
cies [26, 27, 22]. Broadly speaking, communications in MARL can be divided
into two main focuses: parameter sharing, which uses a single neural network
whose parameters are shared among all agents [27], and memory driven learning,
in which the agents use shared memory as a communication channel as a way to
first read the memory and then write the responses [28].

3.3 Cooperation and Competitions
Although explicit communication can be used in cooperation, it is not a necessity
for cooperative problems. In this category, the analyzed works are evaluated in
either fully cooperative or fully competitive or mixed settings.

3.3.1 Fairness

When we extend to multiple agents, we may not always want to learn the "best
arm" since this notion may not be accurate or fair in this setting. This is because
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each agent may perceive a different arm to be the best for itself. Therefore, the
goal becomes to learn a fair distribution over the arms.

[29] uses Nash social welfare, a fairness objective borrowed from computational
social choice, to make a fair collective decision. A distribution p that places
probability pj on each arm j gives expected utility pj · µi,j to agent i. The
objective for Nash social welfare is:

NSW (p, µ?) =

N∏
i=1

 K∑
j=1

pj · µ?i,j


Hence, according to this criterion, the fairest distribution maximizes the product
of the expected utilities to the agents.

3.3.1.1 Explore-First The analysis here is similar to that of the single agent
setting beginning in the exploration stage (single-agent explore-first), where each
agent pulls each arm L times. However, at the end of this stage, we compute
a policy p̂ with the best estimated Nash social welfare. During exploitation, it
uses policy p̂ in every round.

The regret bound is also similar to single-agent explore-first (K
1
3T

2
3 log

1
3 (T )),

but with an extra N
2
3 term.

3.3.1.2 Epsilon-Greedy This is also similar to the single-agent variant
where at each round t, exploration is performed with probability εt in which
arms are cycled through in round-robin fashion. Otherwise, the algorithm
exploits by using the policy p̂t with the highest Nash social welfare under the
current estimated reward matrix.

Epsilon-Greedy is horizon-independent, and has an expected regret of :
N

2
3K

1
3T

2
3 log

1
3 (NKt) for εt = N

2
3K

1
3 t−

1
3 log

1
3 (NKt)

3.3.1.3 UCB This multi-agent version of UCB similarly selects a policy
that maximizes the estimated Nash social welfare plus a confidence term. This
confidence term involves taking a linear combination of each agent’s confidence
interval.

If αt = N ∀t, the expected regret is NKT
1
2 log(NKT )

3.3.1.4 Distribution Generalization Reward distributions are generally
always assumed to be sub-Gaussian, which is a probability distribution with a
strong tail decay. However, increasing evidence shows that this may not hold in
many applications, some of which include distributed load estimation of internet
traffic and multi-agent modeling of supply chain networks. In coordinated tasks,
this also applies to situations with a non-zero bias in the communication channel.

[30] introduces robust cooperative algorithms that are studied on heavy-
tailed random variables, which are variables that do not admit a finite moment-
generating function.They derive an algorithm MP-UCB for the cooperative
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multi-agent stochastic bandit under heavy-tailed densities. The main technique
is to control the variance of the arm estimators across the communication graph
G when the consensus protocol provides suboptimal guarantees. This is done by
incorporating robust mean estimators to achieve optimal rates.

They derive a lower bound of K∆−
1
ε ln(T ) on the group regret.

3.3.2 MARL with Cooperations and Competitions

Many recent MARL works build upon the game theoretical environment called
Sequential Social Dilemma (SSD), a framework described in section 2.1.2.2 [5].
MARL algorithms with emergent behaviors tend to have cooperation-like and
competition-like behaviors [5, 8, 7, 21, 22]. Notice that the SSD framework
defines cooperations and defections not on the basis of individual actions, but
rather on overall policy trajectories. Some of the works either focus entirely on
cooperation [8, 22], while some other focused on mixed strategies [5, 31, 7].

3.4 Inference of Other Agents
These works explicitly model other agents, thereby helping with goal inference
and accounting for other agents’ learning behavior.

3.4.1 Robustness

By inferring the behavior of specialized agents, multi-agent algorithms can
become more robust to various conditions.

3.4.1.1 Malicious Agent [32] generalizes the original multi-agent bandit
setting to include n honest andmmalicious agents. This is particularly applicable
to many real-life scenarios, such as identifying machine faults in a distributed
system or spam in a social recommendation system.

They present a method in which honest agents learn which agents are ma-
licious, and then dynamically reduce communication with them. This is done
through "blocking", meaning that if an arm recommended by a particular other
agent performs poorly at timestep t, the current agent will ignore that agent’s
recommendations until step t2. By blocking in this interval, we prevent over-
penalization of honest agents who mistakenly recommend bad arms at small t due
to noise in the environment. Simultaneously, malicious agents who repeatedly
recommend bad arms are punished with increasing severity.

The upper bound for the regret is upper bounded by (m + k/n)log(T/∆),
where ∆ is the arm gap.

3.4.2 Inference of Other Agents in MARL

Several works in MARL focus on using causality to infer other agents’ intentions
[8, 33, 31, 7, 21]. The works in this category can be divided into those using
behavioral metrics such as social influence [33] and inequity aversion [8], and
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those that focus on joint policy optimizations [31, 7, 22], which overlap with
cooperation-focused methods mentioned in section 3.3.2.

4 Conclusion and Discussion
We present a literature review for both the multi-armed bandit and reinforcement
learning problem and grouping their respective multi-agent learning algorithms
under common themes of:

• Emergent behaviors

• Communication

• Cooperation and Competition

• Inference of Other Agents

In general, these categorizations had more of an overlap in the bandit literature,
on top of which there weren’t works relating to emergent behaviors mainly due
to the nature of the bandit problem being more constrained and applicable to
a smaller subset of tasks. Reinforcement learning, although more general and
more readily used for a wide variety of problems, these papers usually don’t
provide as much of a theoretical justification. We hope that this report work will
serve as a reference to mutually gain insights on both the reinforcement learning
and bandit problems and provide inspiration when thinking of new methods to
approach either one.
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