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Lecture 20: Value Iteration and Q-learning
Lecturer: Jiantao Jiao Scribe: Chinmay Maheshwari, Sandy Tanwisuth

1 Recap from last lecture

Recall that last time we started the discussion on the offline learning. We constructed the plug-in estimators
of transition and reward functions. The main result stated that if the difference between the actual rewards
and transitions from their plug-in estimators is small then the difference between the value function of the
actual system and the “plug-in” system for any policy π is small. We gave upper bounds on the difference
of value functions.

2 Introduction

In this lecture, we analyze the offline version of a popular RL algorithm Q-learning. We analyze the perfor-
mance of this algorithm on one of the simplest RL formulations, namely fixed-horizon time varying transition
and reward setting. Further discussion and references, see [1].

3 Setting

We denote the state space by S while the action space is denoted by A. The time horizon for the problem
is denoted by H. For any time h ∈ [H] the probability of transitioning to state s′ ∈ S on taking action
a ∈ A from state s ∈ S is denoted by Ph(s′|s, a). Naturally, for all (s, a, h) ∈ S × A × [H] we have∑
s′∈S Ph(s′|s, a) = 1. To tackle the fixed horizon time varying transitions and reward problem we work with

an augmented state space, namely Saug := {(s, h) : s ∈ S, h ∈ [H]}. This ensures that the state space across
time horizon are disjoint. Note that at any time h ∈ [H] the states only lie in the set Sh := {(s, h) : s ∈ S}.
Thus for any h, h′ ∈ [H] such that h 6= h′, Sh

⋂
Sh′ = ∅.

Note that we can equivalently consider the time-varying transitions on the state space S as time-invariant
transition on the augmented state space Saug. In particular, let P denote the time invariant transition on
Saug which is defined as

P((s′, h′)|(s, h), a) := Ph(s′|s, a)I(h′ = h+ 1),

where I(h′ = h+1) is an indicator random variable which is 0 everywhere except on the event that h′ = h+1
on which it takes value 1. This is the formulation that should be kept at the back of our mind for the remaining
lecture.

4 Algorithms for fixed horizon, time-variant transition & reward

Before proceeding to Q-learning, we see how does plug in based approach discussed last time look like when
applied to fixed-horizon time varying transition and reward setting. In addition, we also work with the
uniform coverage assumption as in the last lecture.

4.1 Version of Value iteration For the ease of presentation, we assume that the rewards are
known and deterministic. This is because the plug in estimator for transition takes a lot of sample to
converge close enough to the true transition as compared to the empirical average of rewards. We denote
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the reward obtained at time h ∈ [H] in state s ∈ S on taking action a ∈ A by rh(s, a) ∈ [0, Rmax] where
Rmax is the upper limit on the reward.

For all (s, h, a) ∈ S × [H]×A we construct the plug in estimator for transition function by sampling N
iid states {s′1, s′2, . . . , s′N} from the transition function Ph(·|s, a). The estimator is denoted by

P̂h(s′|s, a) =
1

N

N∑
i=1

I(s′ = s′i)

Using the above plug in estimator and the reward function we compute the value function at all times using
finite horizon dynamic programming principle [2, Chapter 4]. That is, for all (s, h, a) ∈ S × [H]×A we have

Q̂h(s, a) = rh(s, a) + P̂hV̂h+1(s, a)

where for every s ∈ S
V̂h(s) = max

a∈A
Q̂h(s, a).

We initialize the value function such that Q̂H+1(s, a) = 0 for all (s, a) ∈ S ×A.

If N = ∞ then P̂h = Ph and if we initialize Q̂H+1(s, a) = 0 for all s, a then we can recover the exact
Q-function as the iterations of the above algorithm then become exactly the dynamic programming recursion
for the actual system. The performance guarantees for the above algorithm can be found in [3].

4.2 Q-learning We now start with the Q-learning algorithm. The main highlight of this method is

that you do not need store the plug-in estimator P̂h. Therefore there is no compulsion to learn the true
transition matrix we only aim to obtain the best policy. Thus there will be definitely less computational
storage as compared to the plug in approach. The idea of Q learning is to sample from distribution and
then use gradient type update. The main question is – does this converge? Before answering that we first
mention the Q-learning algorithm

In this algorithm, at every iteration we maintain an estimate of the Q-function for all time steps. More-
over, at every iteration of the algorithm we draw a sample from Ph(·|s, a) for all (s, h, a) ∈ S × [H]×A and
use that to update the Q-functions. The update law in the iteration t of the algorithm is the following:

Q
(t)
h (s, a) = (1− αt)Q(t−1)

h (s, a) + αt(rh(s, a) + V
(t−1)
h+1 (s′t)), ∀(s, h, a) ∈ S × [H]×A (1)

where αt is the step size and s′t ∼ Ph(·|s, a). We now present the pseudo code below

Algorithm 1:

Input: {αt}, N,Q(0)
h (s, a) = 0 for all (s, h, a) ∈ S × [H + 1]×A;

for t = 1, 2, . . . , N do
for h = H,H − 1, . . . , 1 do

for (s, a) ∈ S ×A do
sample state s′t ∼ Ph(·|s, a) ;

Update Q
(t)
h (s, a) = (1− αt)Q(t−1)

h (s, a) + αt(rh(s, a) + V
(t−1)
h+1 (s′t));

Compute V
(t)
h (s, a) = maxa∈AQ

(t)
h (s, a);

end

end

end

The above form of Q-learning was recursive. We now focus on non-recursive form of Q-learning. Note
that the recursive formula can be equivalently written as

Q
(t)
h (s, a) =

t∑
i=1

γ
(i)
t (rh(s, a) + V

(i−1)
h+1 (s′i))
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where

γ
(i)
t := αi

t∏
j=i+1

(1− αj)

One can verify that
t∑
i=1

γ
(i)
t = 1(refer [4, page 7 ]). Using this observation we can rewrite the non-recursive

form of update as

Q
(t)
h (s, a) = rh(s, a) +

t∑
i=1

γ
(i)
t V

(i−1)
h+1 (s′i).

One more interesting observation of this iteration is that if we choose αt = 1
t then γ

(i)
t = 1

t which is
independent of i. This means that the contribution in final Q-function of each value function is same. We
can control how much contribution each value function in the past iterate has to make to current Q-function

by choosing γ
(i)
t (actually α

(i)
t ) appropriately. So large values of γ

(i)
t for smaller i means we are giving more

weight to initial iterates while if γ
(i)
t is large for large i then this means we are giving more weight to more

recent iterates. Ideally, we want to strike a balance. So the above observation hints that a good learning
rate should be around 1

t . Indeed, in our analysis we work with similar step size.

Theorem 1. Choose αt = H+1
H+t >

1
t . Let the iterates of the algorithm be denoted by {Q(t)

h }h∈[H],t∈[N ] and

let the actual Q-function be denoted by {Q(∗)
h }h∈[H]. Then with probability of 1− δ, we have∥∥∥∥∥1

t

t∑
i=1

Q
(i)
h −Q

(∗)
h

∥∥∥∥∥
∞

≤

√
H5(log(HSAδ ))

t
.

We introduce the following algebraic results from [4, Lemma 4.1] (without proof) to prove Theorem 1.

Lemma 1. Let αt = H+1
H+t then γ

(i)
t satisfies the following properties:

t∑
i=1

(
γ

(i)
t

)2

≤ 2H

t
(1)

∞∑
t=i

γ
(i)
t ≤ 1 +

1

H
(2)

The first property (1) shows that the overall the `2 norm is not too large. This is an important property

especially when we use Hoeffding’s inequality later on in the proof. The second term (2) implies that γ
(i)
t

has a fast decay rate.
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Proof of Theorem 1. Essentially, we are trying to analyze the difference between Q
(j)
h (s, a) and Q

(∗)
h (s, a).

Q
(j)
h (s, a)−Q(∗)

h (s, a) =

j∑
i=1

γ
(i)
j

[
V

(i−1)
h+1 (s′i)−

(
PhV (∗)

h+1

)
(s, a)

]

We introduced a natural intermediate term V
(∗)
h+1 (s′i) to aid the comparison. As a result, the summation

terms will be as follows:

Q
(j)
h (s, a)−Q(∗)

h (s, a) =

j∑
i=1

γ
(i)
j

(
V

(i−1)
h+1 (s′i)− V

(∗)
h+1 (s′i)

)
+

j∑
i=1

γ
(i)
j

(
V

(∗)
h+1 (s′i)−

(
PV (∗)

h+1

)
(s, a)

)
.︸ ︷︷ ︸

:=∆j

Notice that the second summation term is the weighted average of i.i.d. random variables with bounded
support. Thus, using Hoeffding inequality the second summation term defined as ∆j is upper bounded by√

j∑
i=1

(γ
(i)
j )2H2(log(HSAδ )), for each (s, a) with probability of at least 1 − δ

HSA , which is less than
√

H3

j

ignoring some log terms. Note that by union bounds with probability of at least 1− δ for all h,∥∥∥Q(j)
h −Q

(∗)
h

∥∥∥
∞
≤

j∑
i=1

γ
(i)
j

∥∥∥V (i−1)
h+1 − V (∗)

h+1

∥∥∥
∞

+ ∆j .

Again, ∆j is upper bounded by
√

H3

j ignoring the log terms. Moreover ‖V (i−1)
h+1 − V (∗)

h+1‖∞ ≤ ‖Q
(i−1)
h+1 −

Q
(∗)
h+1‖∞, the proof of which is given in Lemma 2 at the end of this lecture. By summing both sides over j

from 1 to t, we have

t∑
j=1

∥∥∥Q(j)
h −Q

(∗)
h

∥∥∥
∞
≤

t∑
j=1

j∑
i=1

γ
(i)
j

∥∥∥Q(j−1)
h+1 −Q

(∗)
h+1

∥∥∥
∞

+ βt

≤
t∑
i=1

 t∑
j=i

γ
(t)
j

∥∥∥Q(i−1)
h+1 −Q

(∗)
h+1

∥∥∥
∞

+ βt.

Notice that we introduce βt :=
t∑

j=1

∆j which is upper bounded by
√
H3t. From Lemma 1, we learned that

t∑
j=i

γ
(t)
j is upper bounded by 1 + 1

H . Then, we have

t∑
j=1

∥∥∥Q(j)
h −Q

(∗)
h

∥∥∥
∞
≤
(

1 +
1

H

) t−1∑
i=0

∥∥∥Q(i)
h+1 −Q

(∗)
h+1

∥∥∥
∞

+ βt.

When we recursively call H times for all h ∈ H, we can propagate up to 1. First, let h = H. Thus, the final
bound is

t∑
i=1

∥∥∥Q(i)
h −Q

(∗)
h

∥∥∥
∞

. C

(
1 +

(
1 +

1

H

)
+

(
1 +

1

H

)2

+ . . .+

(
1 +

1

H

)H)(√
H3t

)
. C
√
H5t
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where C is a contant term. As a result, we have∥∥∥∥∥1

t

t∑
i=1

Q
(i)
h −Q

(∗)
h

∥∥∥∥∥
∞

≤ 1

t

t∑
i=1

∥∥∥Q(i)
h −Q

(∗)
h

∥∥∥
∞

.

√
H5

t
,

where the first inequality is due to Jensen’s inequality. This completes the proof.

A Appendix

We present one of the results from analysis which is used in the proof of Theorem 1.

Lemma 2. Let Q,Q′ be two Q-functions such that for all (s, a) we have Q(s, a), Q′(s, a) ≥ 0 and let
V, V ′ be the corresponding value functions such that for any s ∈ S, V (s) = maxa∈AQ(s, a) and V ′(s) =
maxa∈AQ

′(s, a). Then
‖V − V ′‖∞ ≤ ‖Q−Q′‖∞

Proof Note that for any s, a,

Q(s, a) = Q(s, a)−Q′(s, a) +Q′(s, a)

⇒ Q(s, a) ≤ |Q(s, a)−Q′(s, a)|+Q′(s, a)

where we have used that fact that Q,Q′ are always non-negative by definition of reward structure. This
means that

max
a

Q(s, a) ≤ max
a

(|Q(s, a)−Q′(s, a)|+Q′(s, a)) ≤ max
a

(|Q(s, a)−Q′(s, a)|) + max
a

Q′(s, a)

Thus we obtain the identity

max
a

Q(s, a)−max
a

Q′(s, a) ≤ max
a

(|Q(s, a)−Q′(s, a)|)

We can as well swap the order of Q and Q’ thus we have

|max
a

Q(s, a)−max
a

Q′(s, a)| ≤ max
a

(|Q(s, a)−Q′(s, a)|)

Now note that

‖V − V ′‖∞ = max
s
|V (s)− V ′(s)|

= max
s
|max

a
Q(s, a)−max

a
Q′(s, a)|

≤ max
s

max
a
|Q(s, a)−Q′(s, a)|

= ‖Q−Q′‖∞
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